224 lines
5.0 KiB
C++
Raw Normal View History

/*
* coax.cpp - coaxial class implementation
*
* Copyright (C) 2001 Gopal Narayanan <gopal@astro.umass.edu>
* Copyright (C) 2002 Claudio Girardi <claudio.girardi@ieee.org>
* Copyright (C) 2005, 2006, 2009, 2011 Stefan Jahn <stefan@lkcc.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this package; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
/*
* coax.c - Puts up window for microstrip and
* performs the associated calculations
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cmath>
#include "units.h"
#include "transline.h"
#include "coax.h"
coax::coax() : transline()
{
}
coax::~coax()
{
}
/*
* get_coax_sub() - get and assign coax substrate parameters into coax
* structure
*/
void coax::get_coax_sub ()
{
er = getProperty ("Er");
mur = getProperty ("Mur");
tand = getProperty ("Tand");
sigma = getProperty ("Sigma");
}
/*
* get_coax_comp() - get and assign coax component parameters into
* coax structure
*/
void coax::get_coax_comp ()
{
f = getProperty ("Freq", UNIT_FREQ, FREQ_HZ);
}
/*
* get_coax_elec() - get and assign coax electrical parameters into
* coax structure
*/
void coax::get_coax_elec ()
{
Z0 = getProperty ("Z0", UNIT_RES, RES_OHM);
ang_l = getProperty ("Ang_l", UNIT_ANG, ANG_RAD);
}
/*
* get_coax_phys() - get and assign coax physical parameters into coax
* structure
*/
void coax::get_coax_phys ()
{
din = getProperty ("din", UNIT_LENGTH, LENGTH_M);
dout = getProperty ("dout", UNIT_LENGTH, LENGTH_M);
l = getProperty ("L", UNIT_LENGTH, LENGTH_M);
}
double coax::alphad_coax ()
{
double ad;
ad = (pi/C0) * f * sqrt(er) * tand;
ad = ad * 20.0 / log(10.0);
return ad;
}
double coax::alphac_coax ()
{
double ac, Rs;
Rs = sqrt((pi * f * mur* MU0)/sigma);
ac = sqrt(er) * (((1/din) + (1/dout))/log(dout/din)) * (Rs/ZF0);
ac = ac * 20.0 / log(10.0);
return ac;
}
/*
* analyze() - analysis function
*/
void coax::analyze ()
{
double lambda_g;
/* Get and assign substrate parameters */
get_coax_sub();
/* Get and assign component parameters */
get_coax_comp();
/* Get and assign physical parameters */
get_coax_phys();
if (din != 0.0){
Z0 = (ZF0/2/pi/sqrt(er))*log(dout/din);
}
lambda_g = (C0/(f))/sqrt(er * mur);
/* calculate electrical angle */
ang_l = (2.0 * pi * l)/lambda_g; /* in radians */
setProperty ("Z0", Z0, UNIT_RES, RES_OHM);
setProperty ("Ang_l", ang_l, UNIT_ANG, ANG_RAD);
show_results();
}
/*
* synthesize() - synthesis function
*/
int coax::synthesize ()
{
double lambda_g;
/* Get and assign substrate parameters */
get_coax_sub();
/* Get and assign component parameters */
get_coax_comp();
/* Get and assign electrical parameters */
get_coax_elec ();
/* Get and assign physical parameters */
get_coax_phys();
if (isSelected ("din")) {
/* solve for din */
din = dout / exp(Z0*sqrt(er)/ZF0*2*pi);
setProperty ("din", din, UNIT_LENGTH, LENGTH_M);
} else if (isSelected ("dout")) {
/* solve for dout */
dout = din * exp(Z0*sqrt(er)/ZF0*2*pi);
setProperty ("dout", dout, UNIT_LENGTH, LENGTH_M);
}
lambda_g = (C0/(f))/sqrt(er * mur);
/* calculate physical length */
l = (lambda_g * ang_l)/(2.0 * pi); /* in m */
setProperty ("L", l, UNIT_LENGTH, LENGTH_M);
show_results();
return 0;
}
/*
* show_results() - show results
*/
void coax::show_results()
{
double fc;
short m, n;
atten_dielectric = alphad_coax () * l;
atten_cond = alphac_coax () * l;
setResult (0, atten_cond, "dB");
setResult (1, atten_dielectric, "dB");
n = 1;
fc = C0 / sqrt (er * mur) / (pi_over_2 * (dout + din)/(double) n);
setResult (2, "none");
if (fc <= f) {
char text[256], txt[256];
strcpy (text, "TE(1,1) ");
m = 2;
fc = C0 / sqrt (er * mur) / (pi_over_2 * (dout + din)/(double) m);
while ((fc <= f) && (m<10)) {
sprintf(txt, "TE(n,%d) ",m);
strcat(text,txt);
m++;
fc = C0 / sqrt (er * mur) / (pi_over_2 * (dout + din)/(double) m);
}
setResult (2, text);
}
setResult (3, "none");
m = 1;
fc = C0 / sqrt (er * mur) / ((dout - din)/(float) m);
if (fc <= f) {
char text[256], txt[256];
strcpy (text, "");
while ((fc <= f) && (m<10)) {
sprintf(txt, "TM(n,%d) ",m);
strcat(text,txt);
m++;
fc = C0 / sqrt (er * mur) / ((dout - din)/(double) m);
}
setResult (3, text);
}
}