qucs_s/qucs/diagrams/graph.cpp

181 lines
5.0 KiB
C++
Raw Normal View History

2003-10-16 14:02:09 +00:00
/***************************************************************************
graph.cpp - description
-------------------
begin : Thu Oct 2 2003
copyright : (C) 2003 by Michael Margraf
email : margraf@mwt.ee.tu-berlin.de
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#include "graph.h"
2004-04-04 15:56:10 +00:00
#include <math.h>
2003-10-20 08:30:34 +00:00
Graph::Graph(const QString& _Line)
2003-10-16 14:02:09 +00:00
{
2003-10-20 08:30:34 +00:00
Line = _Line;
2004-04-04 15:56:10 +00:00
Type = isGraph;
2003-10-20 08:30:34 +00:00
count = 0; // no points in graph
Points = 0;
Thick = 1;
2003-11-03 10:27:28 +00:00
Color = 0x0000ff; // blue
2004-04-04 15:56:10 +00:00
isSelected = false;
2003-10-28 11:44:24 +00:00
Points = 0;
2003-10-20 08:30:34 +00:00
cPoints.setAutoDelete(true);
2003-10-16 14:02:09 +00:00
}
Graph::~Graph()
{
2003-10-28 11:44:24 +00:00
if(Points != 0) delete[] Points;
2003-10-16 14:02:09 +00:00
}
// ---------------------------------------------------------------------
2004-04-17 09:11:48 +00:00
void Graph::paint(QPainter *p, int x0, int y0)
2003-10-16 14:02:09 +00:00
{
int *pp = Points;
2003-10-20 08:30:34 +00:00
if(pp == 0) return;
2004-04-04 15:56:10 +00:00
if(isSelected) {
p->setPen(QPen(QPen::darkGray,Thick+4));
2004-04-17 09:11:48 +00:00
p->drawPoint(x0+(*pp), y0-(*(pp+1)));
2004-04-04 15:56:10 +00:00
for(int n=count-1; n>0; n--) {
2004-04-17 09:11:48 +00:00
p->drawLine(x0+(*pp), y0-(*(pp+1)), x0+(*(pp+2)), y0-(*(pp+3)));
2004-04-04 15:56:10 +00:00
pp += 2;
}
pp = Points;
p->setPen(QPen(QPen::white, Thick, Qt::SolidLine));
2004-04-17 09:11:48 +00:00
p->drawPoint(x0+(*pp), y0-(*(pp+1)));
2004-04-04 15:56:10 +00:00
for(int n=count-1; n>0; n--) {
2004-04-17 09:11:48 +00:00
p->drawLine(x0+(*pp), y0-(*(pp+1)), x0+(*(pp+2)), y0-(*(pp+3)));
2004-04-04 15:56:10 +00:00
pp += 2;
}
p->setPen(QPen(QColor(Color)));
return;
}
pp = Points;
2003-11-03 10:27:28 +00:00
p->setPen(QPen(QColor(Color), Thick, Qt::SolidLine));
2004-04-17 09:11:48 +00:00
p->drawPoint(x0+(*pp), y0-(*(pp+1)));
2003-10-16 14:02:09 +00:00
for(int n=count-1; n>0; n--) {
2004-04-17 09:11:48 +00:00
p->drawLine(x0+(*pp), y0-(*(pp+1)), x0+(*(pp+2)), y0-(*(pp+3)));
2003-10-16 14:02:09 +00:00
pp += 2;
}
}
2003-10-20 08:30:34 +00:00
// ---------------------------------------------------------------------
QString Graph::save()
{
QString s = " <"+Line+" "+Color.name()+" "+QString::number(Thick)+">";
return s;
}
// ---------------------------------------------------------------------
bool Graph::load(const QString& _s)
{
bool ok;
QString s = _s;
if(s.at(0) != '<') return false;
if(s.at(s.length()-1) != '>') return false;
s = s.mid(1, s.length()-2); // cut off start and end character
Line = s.section(' ',0,0); // Line
QString n;
n = s.section(' ',1,1); // Color
Color.setNamedColor(n);
if(!Color.isValid()) return false;
n = s.section(' ',2,2); // Thick
Thick = n.toInt(&ok);
if(!ok) return false;
return true;
}
2004-04-04 15:56:10 +00:00
// --------------------------------------------------------------------------
// Checks if the coordinates x/y point to the graph. x/y are relative to diagram cx/cy
// 5 is the precision the user must point onto the graph.
int Graph::getSelected(int x, int y)
{
int *pp = Points;
if(pp == 0) return -1;
2004-04-10 11:29:03 +00:00
int A;
int dx, dx2, x1;
int dy, dy2, y1;
for(int n=1; n<count; n++) { // count-1 runs (because need 2 points per run)
x1 = *(pp++); y1 = *(pp++);
dx = x - x1;
dx2 = (*pp);
if(dx < -5) { if(x < dx2-5) continue; } // lies point between x coordinates ?
else { if(x > dx2+5) continue; }
dy = y - y1;
dy2 = (*(pp+1));
if(dy < -5) { if(y < dy2-5) continue; } // lies point between y coordinates ?
else { if(y > dy2+5) continue; }
dx2 -= x1;
dy2 -= y1;
A = dx2*dy - dx*dy2; // calculate the rectangle area spanned
A *= A; // avoid the need for square root
A -= 25*(dx2*dx2 + dy2*dy2); // substract selectable area
if(A <= 0) return n; // lies x/y onto the graph line ?
}
return -1;
/* ------------------------------------------------------------
This algorithm is not bad, but not very fast.
------------------------------------------------------------
2004-04-04 15:56:10 +00:00
double x_double, y_double, phi, sin_phi, cos_phi;
int len, xn, yn;
int x2, x1 = *(pp++);
int y2, y1 = *(pp++);
for(int n=1; n<count; n++) { // count-1 runs (because need 2 points per run)
x2 = (*pp) - x1;
y2 = (*(pp+1)) - y1;
x_double = double(x-x1);
y_double = double(y-y1);
phi = -atan2(double(y2), double(x2));
sin_phi = sin(phi);
cos_phi = cos(phi);
len = int( sqrt(double( x2*x2 + y2*y2 )) )+5;
xn = int(x_double*cos_phi - y_double*sin_phi);
yn = int(x_double*sin_phi + y_double*cos_phi);
// lies x/y onto the graph line ?
if(xn > -5) if(xn < len) if(yn > -5) if(yn < 5) return n;
x1 = *(pp++); y1 = *(pp++);
}
return -1;
2004-04-10 11:29:03 +00:00
------------------------------------------------------------ */
2004-04-04 15:56:10 +00:00
}