mirror of
https://github.com/ra3xdh/qucs_s
synced 2025-03-28 21:13:26 +00:00
Correct CPW formulae in QucsTranscalc and qucsator
The coplanar waveguide characteristics formulae were incorrect, mainly due to an incorrect usage of the algorithm used to compute the complete elliptic integral of the first kind K(); the argument passed to the function was the elliptic modulus k, while the function was expecting the parameter m=k^2. The function providing K(k) was rewritten, in a slightly simpler form, to accept the elliptic modulus k as input parameter. The same formulae were corrected in both QucsTranscalc and qucsator. The Technical Papers document was updated with a short description of the algorithm used to compute K(k).
This commit is contained in:
parent
3b32eab51e
commit
e1cea8177b
@ -26,6 +26,7 @@
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <float.h>
|
||||
|
||||
|
||||
@ -78,7 +79,7 @@ void coplanar::calc()
|
||||
// backside is metal
|
||||
if (backMetal) {
|
||||
k3 = tanh ((pi / 4) * (w / h)) / tanh ((pi / 4) * (w + s + s) / h);
|
||||
q3 = ellipk (k3) / ellipk (sqrt (1 - k3 * k3));
|
||||
q3 = KoverKp(k3);
|
||||
qz = 1 / (q1 + q3);
|
||||
er0 = 1 + q3 * qz * (er - 1);
|
||||
zl_factor = ZF0 / 2 * qz;
|
||||
@ -86,7 +87,7 @@ void coplanar::calc()
|
||||
// backside is air
|
||||
else {
|
||||
k2 = sinh ((pi / 4) * (w / h)) / sinh ((pi / 4) * (w + s + s) / h);
|
||||
q2 = ellipk (k2) / ellipk (sqrt (1 - k2 * k2));
|
||||
q2 = KoverKp(k2);
|
||||
er0 = 1 + (er - 1) / 2 * q2 / q1;
|
||||
zl_factor = ZF0 / 4 / q1;
|
||||
}
|
||||
@ -99,12 +100,13 @@ void coplanar::calc()
|
||||
We = w + d;
|
||||
|
||||
// modifies k1 accordingly (k1 = ke)
|
||||
ke = We / (We + se + se); // ke = k1 + (1 - k1 * k1) * d / 2 / s;
|
||||
qe = ellipk (ke) / ellipk (sqrt (1 - ke * ke));
|
||||
//ke = We / (We + se + se);
|
||||
ke = k1 + (1 - k1 * k1) * d / 2 / s;
|
||||
qe = KoverKp(ke);
|
||||
// backside is metal
|
||||
if (backMetal) {
|
||||
qz = 1 / (qe + q3);
|
||||
er0 = 1 + q3 * qz * (er - 1);
|
||||
//er0 = 1 + q3 * qz * (er - 1);
|
||||
zl_factor = ZF0 / 2 * qz;
|
||||
}
|
||||
// backside is air
|
||||
@ -272,59 +274,32 @@ int coplanar::synthesize()
|
||||
********** **********
|
||||
***************************************************************** */
|
||||
|
||||
|
||||
/* The function computes the complete elliptic integral of first kind
|
||||
K() and the second kind E() using the arithmetic-geometric mean
|
||||
algorithm (AGM) by Abramowitz and Stegun. */
|
||||
void coplanar::ellipke (double arg, double &k, double &e) {
|
||||
int iMax = 16;
|
||||
if (arg == 1.0) {
|
||||
k = INFINITY; // infinite
|
||||
e = 0;
|
||||
}
|
||||
else if (std::isinf (arg) && arg < 0) {
|
||||
k = 0;
|
||||
e = INFINITY; // infinite
|
||||
}
|
||||
else {
|
||||
double a, b, c, f, s, fk = 1, fe = 1, t, da = arg;
|
||||
int i;
|
||||
if (arg < 0) {
|
||||
fk = 1 / sqrt (1 - arg);
|
||||
fe = sqrt (1 - arg);
|
||||
da = -arg / (1 - arg);
|
||||
}
|
||||
a = 1;
|
||||
b = sqrt (1 - da);
|
||||
c = sqrt (da);
|
||||
f = 0.5;
|
||||
s = f * c * c;
|
||||
for (i = 0; i < iMax; i++) {
|
||||
t = (a + b) / 2;
|
||||
c = (a - b) / 2;
|
||||
b = sqrt (a * b);
|
||||
a = t;
|
||||
f *= 2;
|
||||
s += f * c * c;
|
||||
if (c / a < NR_EPSI) break;
|
||||
}
|
||||
if (i >= iMax) {
|
||||
k = 0; e = 0;
|
||||
}
|
||||
else {
|
||||
k = pi_over_2 / a;
|
||||
e = pi_over_2 * (1 - s) / a;
|
||||
if (arg < 0) {
|
||||
k *= fk;
|
||||
e *= fe;
|
||||
}
|
||||
}
|
||||
K(k) using the arithmetic-geometric mean algorithm (AGM) found e.g.
|
||||
in Abramowitz and Stegun (17.6.1).
|
||||
Note that the argument of the function here is the elliptic modulus k
|
||||
and not the parameter m=k^2 . */
|
||||
double coplanar::ellipk (double k) {
|
||||
if ((k < 0.0) || (k >= 1.0))
|
||||
// we use only the range from 0 <= k < 1
|
||||
return std::numeric_limits<double>::quiet_NaN();
|
||||
|
||||
double a = 1.0;
|
||||
double b = sqrt(1-k*k);
|
||||
double c = k;
|
||||
|
||||
while (c > NR_EPSI) {
|
||||
double tmp = (a + b) / 2.0;
|
||||
c = (a - b) / 2.0;
|
||||
b = sqrt(a * b);
|
||||
a = tmp;
|
||||
}
|
||||
return (pi_over_2 / a);
|
||||
}
|
||||
|
||||
/* We need to know only K(k), and if possible KISS. */
|
||||
double coplanar::ellipk (double k) {
|
||||
double r, lost;
|
||||
ellipke (k, r, lost);
|
||||
return r;
|
||||
double coplanar::KoverKp(double k) {
|
||||
if ((k < 0.0) || (k >= 1.0))
|
||||
return std::numeric_limits<double>::quiet_NaN();
|
||||
|
||||
return (ellipk(k) / ellipk(sqrt(1-k*k)));
|
||||
}
|
||||
|
@ -54,8 +54,8 @@ class coplanar : public transline {
|
||||
void show_results();
|
||||
void getProperties();
|
||||
|
||||
void ellipke(double, double&, double&);
|
||||
double ellipk(double);
|
||||
double KoverKp(double);
|
||||
};
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user