Correct CPW formulae in QucsTranscalc and qucsator

The coplanar waveguide characteristics formulae were incorrect, mainly
due to an incorrect usage of the algorithm used to compute the complete
elliptic integral of the first kind K(); the argument passed to the
function was the elliptic modulus k, while the function was expecting
the parameter m=k^2.
The function providing K(k) was rewritten, in a slightly simpler form,
to accept the elliptic modulus k as input parameter.
The same formulae were corrected in both QucsTranscalc and qucsator.
The Technical Papers document was updated with a short description
of the algorithm used to compute K(k).
This commit is contained in:
in3otd 2015-07-12 15:35:07 +02:00
parent 3b32eab51e
commit e1cea8177b
2 changed files with 32 additions and 57 deletions

View File

@ -26,6 +26,7 @@
#include <stdio.h>
#include <string.h>
#include <cmath>
#include <limits>
#include <float.h>
@ -78,7 +79,7 @@ void coplanar::calc()
// backside is metal
if (backMetal) {
k3 = tanh ((pi / 4) * (w / h)) / tanh ((pi / 4) * (w + s + s) / h);
q3 = ellipk (k3) / ellipk (sqrt (1 - k3 * k3));
q3 = KoverKp(k3);
qz = 1 / (q1 + q3);
er0 = 1 + q3 * qz * (er - 1);
zl_factor = ZF0 / 2 * qz;
@ -86,7 +87,7 @@ void coplanar::calc()
// backside is air
else {
k2 = sinh ((pi / 4) * (w / h)) / sinh ((pi / 4) * (w + s + s) / h);
q2 = ellipk (k2) / ellipk (sqrt (1 - k2 * k2));
q2 = KoverKp(k2);
er0 = 1 + (er - 1) / 2 * q2 / q1;
zl_factor = ZF0 / 4 / q1;
}
@ -99,12 +100,13 @@ void coplanar::calc()
We = w + d;
// modifies k1 accordingly (k1 = ke)
ke = We / (We + se + se); // ke = k1 + (1 - k1 * k1) * d / 2 / s;
qe = ellipk (ke) / ellipk (sqrt (1 - ke * ke));
//ke = We / (We + se + se);
ke = k1 + (1 - k1 * k1) * d / 2 / s;
qe = KoverKp(ke);
// backside is metal
if (backMetal) {
qz = 1 / (qe + q3);
er0 = 1 + q3 * qz * (er - 1);
//er0 = 1 + q3 * qz * (er - 1);
zl_factor = ZF0 / 2 * qz;
}
// backside is air
@ -272,59 +274,32 @@ int coplanar::synthesize()
********** **********
***************************************************************** */
/* The function computes the complete elliptic integral of first kind
K() and the second kind E() using the arithmetic-geometric mean
algorithm (AGM) by Abramowitz and Stegun. */
void coplanar::ellipke (double arg, double &k, double &e) {
int iMax = 16;
if (arg == 1.0) {
k = INFINITY; // infinite
e = 0;
}
else if (std::isinf (arg) && arg < 0) {
k = 0;
e = INFINITY; // infinite
}
else {
double a, b, c, f, s, fk = 1, fe = 1, t, da = arg;
int i;
if (arg < 0) {
fk = 1 / sqrt (1 - arg);
fe = sqrt (1 - arg);
da = -arg / (1 - arg);
}
a = 1;
b = sqrt (1 - da);
c = sqrt (da);
f = 0.5;
s = f * c * c;
for (i = 0; i < iMax; i++) {
t = (a + b) / 2;
c = (a - b) / 2;
b = sqrt (a * b);
a = t;
f *= 2;
s += f * c * c;
if (c / a < NR_EPSI) break;
}
if (i >= iMax) {
k = 0; e = 0;
}
else {
k = pi_over_2 / a;
e = pi_over_2 * (1 - s) / a;
if (arg < 0) {
k *= fk;
e *= fe;
}
}
K(k) using the arithmetic-geometric mean algorithm (AGM) found e.g.
in Abramowitz and Stegun (17.6.1).
Note that the argument of the function here is the elliptic modulus k
and not the parameter m=k^2 . */
double coplanar::ellipk (double k) {
if ((k < 0.0) || (k >= 1.0))
// we use only the range from 0 <= k < 1
return std::numeric_limits<double>::quiet_NaN();
double a = 1.0;
double b = sqrt(1-k*k);
double c = k;
while (c > NR_EPSI) {
double tmp = (a + b) / 2.0;
c = (a - b) / 2.0;
b = sqrt(a * b);
a = tmp;
}
return (pi_over_2 / a);
}
/* We need to know only K(k), and if possible KISS. */
double coplanar::ellipk (double k) {
double r, lost;
ellipke (k, r, lost);
return r;
double coplanar::KoverKp(double k) {
if ((k < 0.0) || (k >= 1.0))
return std::numeric_limits<double>::quiet_NaN();
return (ellipk(k) / ellipk(sqrt(1-k*k)));
}

View File

@ -54,8 +54,8 @@ class coplanar : public transline {
void show_results();
void getProperties();
void ellipke(double, double&, double&);
double ellipk(double);
double KoverKp(double);
};