qucs_s/qucs/diagrams/diagram.cpp
luz paz 10c1ee639c Fix various typos (including documenation)
Found via `codespell -q 3 -S *.ts,./qucs/ChangeLog -L ba,coul,inout,leaded,nd,numer,ro`
2022-07-05 07:08:28 -04:00

1996 lines
55 KiB
C++

/***************************************************************************
diagram.cpp
-------------
begin : Thu Oct 2 2003
copyright : (C) 2003, 2004, 2005 by Michael Margraf
email : michael.margraf@alumni.tu-berlin.de
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
/*!
\class Diagram
\brief The Diagram class is a superclass for diagrams.
\todo Should probably use QFontMetrics::boundingRect(QString).width instead
of QFontMetrics::width(QString), since only the first gives the actual
width (see Qt docs)
*/
#if HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdlib.h>
#include <cmath>
#include <float.h>
#if HAVE_IEEEFP_H
# include <ieeefp.h>
#endif
#include <locale.h>
#include "diagram.h"
#include "main.h"
#include "mnemo.h"
#include "schematic.h"
#include "rect3ddiagram.h"
#include "misc.h"
#include <QTextStream>
#include <QMessageBox>
#include <QRegExp>
#include <QDateTime>
#include <QPainter>
#include <QDebug>
Diagram::Diagram(int _cx, int _cy)
{
cx = _cx; cy = _cy;
// x1, x2, y1, y2 are the selectable boundings of the diagram, but these
// are the real boundings. They are set in "createAxisLabels()".
Bounding_x1 = Bounding_x2 = Bounding_y1 = Bounding_y2 = 0;
xAxis.numGraphs = yAxis.numGraphs = zAxis.numGraphs = 0;
xAxis.min = xAxis.low =
yAxis.min = yAxis.low = zAxis.min = zAxis.low = 0.0;
xAxis.max = xAxis.up =
yAxis.max = yAxis.up = zAxis.max = zAxis.up = 1.0;
xAxis.GridOn = yAxis.GridOn = true;
zAxis.GridOn = false;
xAxis.log = yAxis.log = zAxis.log = false;
xAxis.limit_min = yAxis.limit_min = zAxis.limit_min = 0.0;
xAxis.limit_max = yAxis.limit_max = zAxis.limit_max = 1.0;
xAxis.step = yAxis.step = zAxis.step = 1.0;
xAxis.autoScale = yAxis.autoScale = zAxis.autoScale = true;
rotX = 315; // for 3D diagram
rotY = 0;
rotZ = 225;
hideLines = true; // hide invisible lines
Type = isDiagram;
isSelected = false;
GridPen = QPen(Qt::lightGray,0);
}
Diagram::~Diagram()
{
}
/*!
Paint function for most diagrams (cartesian, smith, polar, ...)
*/
void Diagram::paint(ViewPainter *p)
{
paintDiagram(p);
paintMarkers(p);
}
void Diagram::paintDiagram(ViewPainter *p)
{
// paint all lines
foreach(qucs::Line *pl, Lines) {
p->Painter->setPen(pl->style);
p->drawLine(cx+pl->x1, cy-pl->y1, cx+pl->x2, cy-pl->y2);
}
// paint all arcs (1 pixel larger to compensate for strange circle method)
foreach(qucs::Arc *pa, Arcs) {
p->Painter->setPen(pa->style);
p->drawArc(cx+pa->x, cy-pa->y, pa->w, pa->h, pa->angle, pa->arclen);
}
// draw all graphs
foreach(Graph *pg, Graphs)
pg->paint(p, cx, cy);
// keep track of painter state
p->Painter->save();
// write whole text (axis label inclusively)
QTransform wm = p->Painter->worldTransform();
foreach(Text *pt, Texts) {
p->Painter->setWorldTransform(
QTransform(pt->mCos, -pt->mSin, pt->mSin, pt->mCos,
p->DX + float(cx+pt->x) * p->Scale,
p->DY + float(cy-pt->y) * p->Scale));
p->Painter->setPen(pt->Color);
p->Painter->drawText(0, 0, pt->s);
}
p->Painter->setWorldTransform(wm);
p->Painter->setWorldMatrixEnabled(false);
// restore painter state
p->Painter->restore();
if(isSelected) {
int x_, y_;
float fx_, fy_;
p->map(cx, cy-y2, x_, y_);
fx_ = float(x2)*p->Scale + 10;
fy_ = float(y2)*p->Scale + 10;
p->Painter->setPen(QPen(Qt::darkGray,3));
p->Painter->drawRect(x_-5, y_-5, TO_INT(fx_), TO_INT(fy_));
p->Painter->setPen(QPen(Qt::darkRed,2));
p->drawResizeRect(cx, cy-y2); // markers for changing the size
p->drawResizeRect(cx, cy);
p->drawResizeRect(cx+x2, cy-y2);
p->drawResizeRect(cx+x2, cy);
}
}
void Diagram::paintMarkers(ViewPainter *p, bool paintAll)
{
// draw markers last, so they are at the top of painting layers
foreach(Graph *pg, Graphs)
foreach(Marker *pm, pg->Markers)
if ((pm->Type & 1)||paintAll) pm->paint(p, cx, cy);
}
// ------------------------------------------------------------
void Diagram::paintScheme(Schematic *p)
{
p->PostPaintEvent(_Rect, cx, cy-y2, x2, y2);
}
/*!
Put axis labels into the text list.
*/
void Diagram::createAxisLabels()
{
int x, y, w, wmax = 0;
QString Str;
// get size of text using the screen-compatible metric
QFontMetrics metrics(QucsSettings.font, 0);
int LineSpacing = metrics.lineSpacing();
x = (x2>>1);
y = -y1;
if(xAxis.Label.isEmpty()) {
// write all x labels ----------------------------------------
foreach(Graph *pg, Graphs) {
DataX const *pD = pg->axis(0);
if(!pD) continue;
y -= LineSpacing;
if(Name[0] != 'C') { // locus curve ?
w = metrics.boundingRect(pD->Var).width() >> 1;
if(w > wmax) wmax = w;
Texts.append(new Text(x-w, y, pD->Var, pg->Color, 12.0));
}
else {
w = metrics.boundingRect("real("+pg->Var+")").width() >> 1;
if(w > wmax) wmax = w;
Texts.append(new Text(x-w, y, "real("+pg->Var+")",
pg->Color, 12.0));
}
}
}
else {
y -= LineSpacing;
encode_String(xAxis.Label, Str);
w = metrics.boundingRect(Str).width() >> 1;
if(w > wmax) wmax = w;
Texts.append(new Text(x-w, y, Str, Qt::black, 12.0));
}
Bounding_y2 = 0;
Bounding_y1 = y - LineSpacing;
Bounding_x2 = wmax - (x2 >> 1);
if(Bounding_x2 < 0) Bounding_x2 = 0;
Bounding_x1 = Bounding_x2;
wmax = 0;
x = -x1;
y = y2>>1;
if(yAxis.Label.isEmpty()) {
// draw left y-label for all graphs ------------------------------
foreach(Graph *pg, Graphs) {
if(pg->yAxisNo != 0) continue;
if(pg->cPointsY) {
if(Name[0] != 'C') { // location curve ?
w = metrics.boundingRect(pg->Var).width() >> 1;
if(w > wmax) wmax = w;
Texts.append(new Text(x, y-w, pg->Var, pg->Color, 12.0, 0.0, 1.0));
}
else {
w = metrics.boundingRect("imag("+pg->Var+")").width() >> 1;
if(w > wmax) wmax = w;
Texts.append(new Text(x, y-w, "imag("+pg->Var+")",
pg->Color, 12.0, 0.0, 1.0));
}
}
else { // if no data => <invalid>
w = metrics.boundingRect(pg->Var+INVALID_STR).width() >> 1;
if(w > wmax) wmax = w;
Texts.append(new Text(x, y-w, pg->Var+INVALID_STR,
pg->Color, 12.0, 0.0, 1.0));
}
x -= LineSpacing;
}
}
else {
encode_String(yAxis.Label, Str);
w = metrics.boundingRect(Str).width() >> 1;
if(w > wmax) wmax = w;
Texts.append(new Text(x, y-w, Str, Qt::black, 12.0, 0.0, 1.0));
x -= LineSpacing;
}
if(Bounding_x1 < -x) Bounding_x1 = -x;
x = x3;
y = y2>>1;
if(zAxis.Label.isEmpty()) {
// draw right y-label for all graphs ------------------------------
foreach(Graph *pg, Graphs) {
if(pg->yAxisNo != 1) continue;
if(pg->cPointsY) {
if(Name[0] != 'C') { // location curve ?
w = metrics.boundingRect(pg->Var).width() >> 1;
if(w > wmax) wmax = w;
Texts.append(new Text(x, y+w, pg->Var,
pg->Color, 12.0, 0.0, -1.0));
}
else {
w = metrics.boundingRect("imag("+pg->Var+")").width() >> 1;
if(w > wmax) wmax = w;
Texts.append(new Text(x, y+w, "imag("+pg->Var+")",
pg->Color, 12.0, 0.0, -1.0));
}
}
else { // if no data => <invalid>
w = metrics.boundingRect(pg->Var+INVALID_STR).width() >> 1;
if(w > wmax) wmax = w;
Texts.append(new Text(x, y+w, pg->Var+INVALID_STR,
pg->Color, 12.0, 0.0, -1.0));
}
x += LineSpacing;
}
}
else {
encode_String(zAxis.Label, Str);
w = metrics.boundingRect(Str).width() >> 1;
if(w > wmax) wmax = w;
Texts.append(new Text(x, y+w, Str, Qt::black, 12.0, 0.0, -1.0));
}
x -= x2;
if(Bounding_x2 < x) Bounding_x2 = x;
wmax -= y2 >> 1;
if(wmax > 0) {
Bounding_y2 = wmax;
wmax *= -1;
if(wmax < Bounding_y1) Bounding_y1 = wmax;
}
}
// ------------------------------------------------------------
int Diagram::regionCode(float x, float y) const
{
int code=0; // code for clipping
if(x < 0.0)
code |= 1;
else if(x > float(x2)) // compare as float to avoid integer overflow
code |= 2;
if(y < 0.0)
code |= 4;
else if(y > float(y2)) // compare as float to avoid integer overflow
code |= 8;
return code;
}
// ------------------------------------------------------------
// Is virtual. This one is for round diagrams only.
bool Diagram::insideDiagram(float x, float y) const
{
float R = float(x2)/2.0 + 1.0; // +1 seems better (graph sometimes little outside)
x -= R;
y -= R;
return ((x*x + y*y) <= R*R);
}
/*!
(try to) set a Marker to a diagram
*/
Marker* Diagram::setMarker(int x, int y)
{
if(getSelected(x, y)) {
// test all graphs of the diagram
foreach(Graph *pg,Graphs) {
int n = pg->getSelected(x-cx, cy-y); // sic!
if(n >= 0) {
assert(pg->parentDiagram() == this);
Marker *pm = new Marker(pg, n, x-cx, y-cy);
pg->Markers.append(pm);
return pm;
}
}
}
return NULL;
}
/*!
Cohen-Sutherland clipping algorithm
*/
void Diagram::rectClip(Graph::iterator &p) const
{
int code, z=0;
float x=0, y=0, dx, dy;
float x_1 = (p-2)->getScrX(), y_1 = (p-2)->getScrY();
float x_2 = (p-1)->getScrX(), y_2 = (p-1)->getScrY();
int code1 = regionCode(x_1, y_1);
int code2 = regionCode(x_2, y_2);
if((code1 | code2) == 0) return; // line completely inside ?
if(code1 != 0) if((p-3)->isPt()) {
p++;
(p-3)->setStrokeEnd();
}
if(code1 & code2) // line not visible at all ?
goto endWithHidden;
if(code2 != 0) {
p->setStrokeEnd();
(p+1)->setScr(x_2, y_2);
z += 2;
}
for(;;) {
if((code1 | code2) == 0) break; // line completely inside ?
if(code1) code = code1;
else code = code2;
dx = x_2 - x_1; // dx and dy never equals zero !
dy = y_2 - y_1;
if(code & 1) {
y = y_1 - dy * x_1 / dx;
x = 0.0;
}
else if(code & 2) {
y = y_1 + dy * (x2-x_1) / dx;
x = float(x2);
}
else if(code & 4) {
x = x_1 - dx * y_1 / dy;
y = 0.0;
}
else if(code & 8) {
x = x_1 + dx * (y2-y_1) / dy;
y = float(y2);
}
if(code == code1) {
x_1 = x;
y_1 = y;
code1 = regionCode(x, y);
}
else {
x_2 = x;
y_2 = y;
code2 = regionCode(x, y);
}
if(code1 & code2)
goto endWithHidden; // line not visible at all ?
}
(p-2)->setScr(x_1, y_1);
(p-1)->setScr(x_2, y_2);
p += z;
return;
endWithHidden:
(p-2)->setScr(x_2, y_2);
p -= 1;
}
/*!
Clipping for round diagrams (smith, polar, ...)
*/
void Diagram::clip(Graph::iterator &p) const
{
float R = float(x2) / 2.0;
float x_1 = (p-2)->getScrX() - R, y_1 = (p-2)->getScrY() - R;
float x_2 = (p-1)->getScrX() - R, y_2 = (p-1)->getScrY() - R;
float dt1 = R*R; // square of radius
float dt2 = dt1 - x_2*x_2 - y_2*y_2;
dt1 -= x_1*x_1 + y_1*y_1;
if(dt1 >= 0.0) if(dt2 >= 0.0) return; // line completely inside ?
if(dt1 < 0.0) if((p-3)->isPt()) { // is there already a line end flag ?
p++;
(p-3)->setStrokeEnd();
}
float x = x_1-x_2;
float y = y_1-y_2;
float C = x_1*x + y_1*y;
float D = x*x + y*y;
float F = C*C + dt1*D;
x_1 += R;
y_1 += R;
x_2 += R;
y_2 += R;
if(F <= 0.0) { // line not visible at all ?
(p-2)->setScr(x_2, y_2);
p -= 1;
return;
}
int code = 0;
R = sqrt(F);
dt1 = C - R;
if((dt1 > 0.0) && (dt1 < D)) { // intersection outside start/end point ?
(p-2)->setScr(x_1 - x*dt1 / D, y_1 - y*dt1 / D);
code |= 1;
}
else {
(p-2)->setScr(x_1, y_1);
}
dt2 = C + R;
if((dt2 > 0.0) && (dt2 < D)) { // intersection outside start/end point ?
(p-1)->setScr(x_1 - x*dt2 / D, y_1 - y*dt2 / D);
p->setStrokeEnd();
p += 2;
code |= 2;
}
(p-1)->setScr(x_2, y_2);
if(code == 0) { // intersections both lie outside ?
(p-2)->setScr(x_2, y_2);
--p;
}
}
// ------------------------------------------------------------
// g->Points must already be empty!!!
// is this a Graph Member?
void Diagram::calcData(Graph *g)
{
double *px;
double *pz = g->cPointsY;
if(!pz) return;
if(g->numAxes() < 1) return;
int i, z, Counter=2;
int Size = ((2*(g->count(0)) + 1) * g->countY) + 10;
if(xAxis.autoScale) if(yAxis.autoScale) if(zAxis.autoScale)
Counter = -50000;
double Dummy = 0.0; // not used
double *py = &Dummy;
g->resizeScrPoints(Size);
auto p = g->begin();
auto p_end = g->begin();
p_end += Size - 9; // limit of buffer
p->setStrokeEnd();
++p;
assert(p!=g->end());
Axis *pa;
if(g->yAxisNo == 0) pa = &yAxis;
else pa = &zAxis;
switch(g->Style) {
case GRAPHSTYLE_SOLID: // ***** solid line ****************************
case GRAPHSTYLE_DASH:
case GRAPHSTYLE_DOT:
case GRAPHSTYLE_LONGDASH:
for(i=g->countY; i>0; i--) { // every branch of curves
px = g->axis(0)->Points;
calcCoordinateP(px, pz, py, p, pa);
++px;
pz += 2;
++p;
for(z=g->axis(0)->count-1; z>0; z--) { // every point
FIT_MEMORY_SIZE; // need to enlarge memory block ?
calcCoordinateP(px, pz, py, p, pa);
++px;
pz += 2;
++p;
if(Counter >= 2) // clipping only if an axis is manual
clip(p);
}
if((p-3)->isStrokeEnd() && !(p-3)->isBranchEnd())
p -= 3; // no single point after "no stroke"
else if((p-2)->isBranchEnd() && !(p-1)->isGraphEnd()) {
if((!(p-1)->isPt()))
--p; // erase last hidden point
}
(p++)->setBranchEnd();
}
p->setGraphEnd();
/*z = p-g->Points+1;
p = g->Points;
qDebug("\n****** p=%p", p);
for(int zz=0; zz<z; zz+=2)
qDebug("c: %d/%d", *(p+zz), *(p+zz+1));*/
return;
default: // symbol (e.g. star) at each point **********************
for(i=g->countY; i>0; i--) { // every branch of curves
px = g->axis(0)->Points;
for(z=g->axis(0)->count; z>0; z--) { // every point
calcCoordinateP(px, pz, py, p, pa);
++px;
pz += 2;
if(insideDiagramP(p)) // within diagram ?
++p;
}
(p++)->setBranchEnd();
assert(p!=g->end());
}
(p++)->setGraphEnd();
/*qDebug("\n******");
for(int zz=0; zz<60; zz+=2)
qDebug("c: %d/%d", *(g->Points+zz), *(g->Points+zz+1));*/
return;
}
// unreachable
}
// -------------------------------------------------------
void Diagram::Bounding(int& _x1, int& _y1, int& _x2, int& _y2)
{
_x1 = cx - Bounding_x1;
_y1 = cy - y2 - Bounding_y2;
_x2 = cx + x2 + Bounding_x2;
_y2 = cy - Bounding_y1;
}
// -------------------------------------------------------
bool Diagram::getSelected(int x_, int y_)
{
if(x_ >= cx-x1) if(x_ <= cx+x3) if(y_ >= cy-y2) if(y_ <= cy+y1)
return true;
return false;
}
/*!
Checks if the resize area was clicked. If so return "true" and sets
x1/y1 and x2/y2 to the border coordinates to draw a rectangle.
*/
bool Diagram::resizeTouched(float fX, float fY, float len)
{
float fCX = float(cx), fCY = float(cy);
float fX2 = float(cx+x2), fY2 = float(cy-y2);
if(fX < fCX-len) return false;
if(fX > fX2+len) return false;
if(fY < fY2-len) return false;
if(fY > fCY+len) return false;
State = 0;
if(fX < fCX+len) State = 1;
else if(fX <= fX2-len) return false;
if(fY > fCY-len) State |= 2;
else if(fY >= fY2+len) return false;
return true;
}
// --------------------------------------------------------------------------
void Diagram::getAxisLimits(Graph *pg)
{
// FIXME: Graph should know the limits. but it doesn't yet.
// we should only copy here. better: just wrap, dont use {x,y,z}Axis
int z;
double x, y, *p;
DataX const *pD = pg->axis(0);
if(pD == 0) return;
if(Name[0] != 'C') { // not for location curves
p = pD->Points;
for(z=pD->count; z>0; z--) { // check x coordinates (1. dimension)
x = *(p++);
if(std::isfinite(x)) {
if(x > xAxis.max) xAxis.max = x;
if(x < xAxis.min) xAxis.min = x;
}
}
}
if(Name == "Rect3D") {
DataX const *pDy = pg->axis(1);
if(pDy) {
p = pDy->Points;
for(z=pDy->count; z>0; z--) { // check y coordinates (2. dimension)
y = *(p++);
if(std::isfinite(y)) {
if(y > yAxis.max) yAxis.max = y;
if(y < yAxis.min) yAxis.min = y;
}
}
}
}
Axis *pa;
if(pg->yAxisNo == 0) pa = &yAxis;
else pa = &zAxis;
(pa->numGraphs)++; // count graphs
p = pg->cPointsY;
if(p == 0) return; // if no data => invalid
for(z=pg->countY*pD->count; z>0; z--) { // check every y coordinate
x = *(p++);
y = *(p++);
if(Name[0] != 'C') {
if(fabs(y) >= 1e-250) x = sqrt(x*x+y*y);
if(std::isfinite(x)) {
if(x > pa->max) pa->max = x;
if(x < pa->min) pa->min = x;
}
}
else { // location curve needs different treatment
if(std::isfinite(x)) {
if(x > xAxis.max) xAxis.max = x;
if(x < xAxis.min) xAxis.min = x;
}
if(std::isfinite(y)) {
if(y > pa->max) pa->max = y;
if(y < pa->min) pa->min = y;
}
}
}
}
// --------------------------------------------------------------------------
void Diagram::loadGraphData(const QString& defaultDataSet)
{
int yNum = yAxis.numGraphs;
int zNum = zAxis.numGraphs;
yAxis.numGraphs = zAxis.numGraphs = 0;
double xmin = xAxis.min, ymin = yAxis.min, zmin = zAxis.min;
double xmax = xAxis.max, ymax = yAxis.max, zmax = zAxis.max;
yAxis.min = zAxis.min = xAxis.min = DBL_MAX;
yAxis.max = zAxis.max = xAxis.max = -DBL_MAX;
int No=0;
foreach(Graph *pg, Graphs) {
qDebug() << "load GraphData load" << defaultDataSet << pg->Var;
if(pg->loadDatFile(defaultDataSet) != 1) // load data, determine max/min values
No++;
getAxisLimits(pg);
}
if(No <= 0) { // All dataset files unchanged ?
yAxis.numGraphs = yNum; // rebuild scrollbar position
zAxis.numGraphs = zNum;
xAxis.min = xmin; yAxis.min = ymin; zAxis.min = zmin;
xAxis.max = xmax; yAxis.max = ymax; zAxis.max = zmax;
return; // -> no update necessary
}
if(xAxis.min > xAxis.max)
xAxis.min = xAxis.max = 0.0;
if(yAxis.min > yAxis.max)
yAxis.min = yAxis.max = 0.0;
if(zAxis.min > zAxis.max)
zAxis.min = zAxis.max = 0.0;
/* if((Name == "Polar") || (Name == "Smith")) { // one axis only
if(yAxis.min > zAxis.min) yAxis.min = zAxis.min;
if(yAxis.max < zAxis.max) yAxis.max = zAxis.max;
}*/
updateGraphData();
}
/*!
Calculate diagram again without reading dataset from file.
*/
void Diagram::recalcGraphData()
{
yAxis.min = zAxis.min = xAxis.min = DBL_MAX;
yAxis.max = zAxis.max = xAxis.max = -DBL_MAX;
yAxis.numGraphs = zAxis.numGraphs = 0;
// get maximum and minimum values
foreach(Graph *pg, Graphs)
getAxisLimits(pg);
if(xAxis.min > xAxis.max) {
xAxis.min = 0.0;
xAxis.max = 1.0;
}
if(yAxis.min > yAxis.max) {
yAxis.min = 0.0;
yAxis.max = 1.0;
}
if(zAxis.min > zAxis.max) {
zAxis.min = 0.0;
zAxis.max = 1.0;
}
if((Name == "Polar") || (Name == "Smith")) { // one axis only
if(yAxis.min > zAxis.min) yAxis.min = zAxis.min;
if(yAxis.max < zAxis.max) yAxis.max = zAxis.max;
}
updateGraphData();
}
// ------------------------------------------------------------------------
void Diagram::updateGraphData()
{
int valid = calcDiagram(); // do not calculate graph data if invalid
foreach(Graph *pg, Graphs) {
pg->clear();
if((valid & (pg->yAxisNo+1)) != 0)
calcData(pg); // calculate screen coordinates
else if(pg->cPointsY) {
delete[] pg->cPointsY;
pg->cPointsY = 0;
}
}
createAxisLabels(); // virtual function
// Setting markers must be done last, because in 3D diagram "Mem"
// is released in "createAxisLabels()".
foreach(Graph *pg, Graphs){
pg->createMarkerText();
}
}
// --------------------------------------------------------------------------
/*!
* does not (yet) load a dat file. only part of it.
* this way, it would belong to graph.cpp. but it's too obsolete, lets see..
*
* FIXME: must invalidate markers.
*/
int Graph::loadDatFile(const QString& fileName)
{
Graph* g = this;
QFile file;
QString Variable;
QFileInfo Info(fileName);
int pos1 = g->Var.indexOf('/');
// if(g->Var.right(3) == "].X") // e.g. stdl[8:0].X
// if(pos > g->Var.indexOf('['))
// pos = -1;
/* WORK-AROUND: A bug in SCIM (libscim) which Qt is linked to causes
to change the locale to the default. */
setlocale (LC_NUMERIC, "C");
QString tail = "";
QString svar = g->Var;
if (pos1 > 0) { // remove simulator signature
tail = '.' + g->Var.section('/',0,0);
svar = g->Var.mid(pos1 + 1);
}
int pos = svar.indexOf(':');
if(pos <= 0) {
file.setFileName(fileName+tail);
Variable = svar;
}
else {
QString ss3 = Info.path()+QDir::separator() + svar.left(pos)+".dat"+tail;
qDebug()<<ss3;
file.setFileName(ss3);
Variable = svar.mid(pos+1);
}
Info.setFile(file);
if(g->lastLoaded.isValid())
if(g->lastLoaded > Info.lastModified())
return 1; // dataset unchanged -> no update necessary
g->countY = 0;
g->mutable_axes().clear(); // HACK
if(g->cPointsY) { delete[] g->cPointsY; g->cPointsY = 0; }
if(Variable.isEmpty()) return 0;
#if 0 // FIXME encapsulation. implement digital waves later.
if(Variable.right(2) == ".X")
if(Name.at(0) != 'T')
return 0; // digital variables only for tabulars and ziming diagram
#endif
// PlotVs() emulation
bool hasExplIndep = false; // Ex[licit indep var
QString ExplIndep = "";
if (Variable.contains("@")) {
hasExplIndep = true;
ExplIndep = Variable.section("@",1,1);
Variable = Variable.section("@",0,0);
}
if(!file.open(QIODevice::ReadOnly)) return 0;
// *****************************************************************
// To strongly speed up the file read operation the whole file is
// read into the memory in one piece.
QByteArray FileContent;
FileContent = file.readAll();
file.close();
char *FileString = FileContent.data();
if(!FileString) return 0;
char *pPos = FileString+FileContent.size()-1;
if(*pPos > ' ') if(*pPos != '>') return 0;
*pPos = 0;
// *****************************************************************
// look for variable name in data file ****************************
bool isIndep = false;
Variable = "dep "+Variable+" ";
// "pFile" is used through-out the whole function and must NOT used
// for other purposes!
char *pFile = strstr(FileString, Variable.toLatin1());
while(pFile) {
if(*(pFile-1) == '<') // is dependent variable ?
break;
else if(strncmp(pFile-3, "<in", 3) == 0) { // is independent variable ?
isIndep = true;
break;
}
pFile = strstr(pFile+4, Variable.toLatin1());
}
if(!pFile) return 0; // data not found
QString Line, tmp;
pFile += Variable.length();
pPos = strchr(pFile, '>');
if(!pPos) return 0; // file corrupt
*pPos = 0;
Line = QString(pFile);
*pPos = '>';
pFile = pPos+1;
if(!isIndep) {
pos = 0;
tmp = Line.section(' ', pos, pos);
while(!tmp.isEmpty()) {
if (hasExplIndep)g->mutable_axes().push_back(new DataX(ExplIndep));
else g->mutable_axes().push_back(new DataX(tmp)); // name of independent variable
pos++;
tmp = Line.section(' ', pos, pos);
}
}
// *****************************************************************
// get independent variable ****************************************
bool ok=true;
double *p;
int counting = 0;
if(isIndep) { // create independent variable by myself ?
counting = Line.toInt(&ok); // get number of values
g->mutable_axes().push_back(new DataX("number", 0, counting));
if(!ok) return 0;
p = new double[counting]; // memory of new independent variable
g->countY = 1;
g->mutable_axes().back()->Points = p;
for(int z=1; z<=counting; z++) *(p++) = double(z);
auto Axis = g->mutable_axes().back();
Axis->min(1.);
Axis->max(double(counting));
}
else { // ...................................
// get independent variables from data file
g->countY = 1;
#if 0 // FIXME: we do not have a Name.
DataX *bLast = 0;
if(Name == "Rect3D") bLast = g->axis(1); // y axis for Rect3D
#endif
#if 0 // FIXME: this is about diagram. do after load.
double min_tmp = xAxis.min, max_tmp = xAxis.max;
#endif
DataX const *pD;
for(int ii= g->numAxes(); (pD = g->axis(--ii)); ) {
#if 0 // FIXME: this is about diagram. do after load.
pa = &xAxis;
if(pD == g->axis(0)) {
xAxis.min = min_tmp; // only count first independent variable
xAxis.max = max_tmp;
}
else if(pD == bLast) pa = &yAxis; // y axis for Rect3D
#endif
counting = loadIndepVarData(pD->Var, FileString, mutable_axis(ii));
if(counting <= 0) return 0;
g->countY *= counting;
}
g->countY /= counting;
}
// *****************************************************************
// get dependent variables *****************************************
counting *= g->countY;
p = new double[2*counting]; // memory for dependent variables
g->cPointsY = p;
#if 0 // FIXME: what does this do?!
if(g->yAxisNo == 0) pa = &yAxis; // for which axis
else pa = &zAxis;
(pa->numGraphs)++; // count graphs
#endif
char *pEnd;
double x, y;
pPos = pFile;
if(Variable.right(3) != ".X ") { // not "digital"
for(int z=counting; z>0; z--) {
pEnd = 0;
while((*pPos) && (*pPos <= ' ')) pPos++; // find start of next number
x = strtod(pPos, &pEnd); // real part
pPos = pEnd + 1;
if(*pEnd < ' ') // is there an imaginary part ?
y = 0.0;
else {
if(((*pEnd != '+') && (*pEnd != '-')) || (*pPos != 'j')) {
delete[] g->cPointsY; g->cPointsY = 0;
return 0;
}
*pPos = *pEnd; // overwrite 'j' with sign
pEnd = 0;
y = strtod(pPos, &pEnd); // imaginary part
*pPos = 'j'; // write back old character
pPos = pEnd;
}
*(p++) = x;
*(p++) = y;
#if 0 // FIXME there is no Name here.
if(Name[0] != 'C')
#endif
{
if(fabs(y) >= 1e-250) x = sqrt(x*x+y*y);
if(std::isfinite(x)) {
auto Axis = g->mutable_axes().back();
Axis->min(x);
Axis->max(x);
}
}
#if 0 // this is not location curve code.
else { // location curve needs different treatment
if(std::isfinite(x)) {
if(x > xAxis.max) xAxis.max = x;
if(x < xAxis.min) xAxis.min = x;
}
if(std::isfinite(y)) {
if(y > pa->max) pa->max = y;
if(y < pa->min) pa->min = y;
}
}
#endif
}
} else { // of "if not digital"
char *pc = (char*)p;
pEnd = pc + 2*(counting-1)*sizeof(double);
// for digital variables (e.g. 100ZX0):
for(int z=counting; z>0; z--) {
while((*pPos) && (*pPos <= ' ')) pPos++; // find start of next bit vector
if(*pPos == 0) {
delete[] g->cPointsY; g->cPointsY = 0;
return 0;
}
while(*pPos > ' ') { // copy bit vector
*(pc++) = *(pPos++);
if(pEnd <= pc) {
counting = pc - (char*)g->cPointsY;
pc = (char*)realloc(g->cPointsY, counting+1024);
pEnd = pc;
g->cPointsY = (double*)pEnd;
pc += counting;
pEnd += counting+1020;
}
}
*(pc++) = 0; // terminate each vector with NULL
}
} // of "if not digital"
lastLoaded = QDateTime::currentDateTime();
return 2;
}
/*!
Reads the data of an independent variable. Returns the number of points.
*/
int Graph::loadIndepVarData(const QString& Variable,
char *FileString, DataX* pD)
{
bool isIndep = false;
QString Line, tmp;
/* WORK-AROUND: A bug in SCIM (libscim) which Qt is linked to causes
to change the locale to the default. */
setlocale (LC_NUMERIC, "C");
Line = "dep "+Variable+" ";
// "pFile" is used through-out the whole function and must NOT used
// for other purposes!
char *pFile = strstr(FileString, Line.toLatin1());
while(pFile) {
if(*(pFile-1) == '<') // is dependent variable ?
break;
else if(strncmp(pFile-3, "<in", 3) == 0) { // is independent variable ?
isIndep = true;
break;
}
pFile = strstr(pFile+4, Line.toLatin1());
}
if(!pFile) return -1; // data not found
pFile += Line.length();
char *pPos = strchr(pFile, '>');
if(!pPos) return -1; // file corrupt
*pPos = 0;
Line = QString(pFile);
*pPos = '>';
pFile = pPos+1;
char *pEnd;
if(!isIndep) { // dependent variable can also be used...
if(Line.indexOf(' ') >= 0) return -1; // ...if only one dependency
Line = "<indep "+Line+" ";
pPos = strstr(FileString, Line.toLatin1());
if(!pPos) return -1;
pPos += Line.length();
pEnd = strchr(pPos, '>');
if(!pEnd) return -1; // file corrupt
*pEnd = 0;
Line = QString(pPos);
*pEnd = '>';
}
bool ok;
int n = Line.toInt(&ok); // number of values
if(!ok) return -1;
double *p = new double[n]; // memory for new independent variable
// DataX *pD = pg->mutable_axes().back();
pD->Points = p;
pD->count = n;
double x;
pPos = pFile;
// find first position containing no whitespace
while((*pPos) && (*pPos <= ' ')) pPos++;
for(int z=0; z<n; z++) {
pEnd = 0;
x = strtod(pPos, &pEnd); // real part
if (*pEnd > ' ') // drop imaginary part because
while (*pEnd > ' ') pEnd++; // Complex number on X-axis has no sense
if(pPos == pEnd) {
delete[] pD->Points; pD->Points = 0;
return -1;
}
*(p++) = x;
#if 0 // this is not location curve code
if(Name[0] != 'C') // not for location curves
if(std::isfinite(x)) {
if(x > pa->max) pa->max = x;
if(x < pa->min) pa->min = x;
}
#endif
pPos = pEnd;
while((*pPos) && (*pPos <= ' ')) pPos++; // find start of next number
}
return n; // return number of independent data
}
/*!
Checks if the two graphs have the same independent variables.
*/
bool Diagram::sameDependencies(Graph const*g1, Graph const*g2) const
{
// FIXME
// return g1->same(*g2);
if(g1 == g2) return true;
if(g1->numAxes()!=g2->numAxes()) return false;
for(unsigned i=0; i<g1->numAxes(); ++i) {
if(g1->axisName(i) != g2->axisName(i)) return false;
}
return true;
}
// ------------------------------------------------------------
int Diagram::checkColumnWidth(const QString& Str,
const QFontMetrics& metrics, int colWidth, int x, int y)
{
//qDebug("%i", metrics.charWidth(Str,0));
int w = metrics.boundingRect(Str).width(); // width of text
if(w > colWidth) {
colWidth = w;
if((x+colWidth) >= x2) { // enough space for text ?
// mark lack of space with a small arrow
Lines.append(new qucs::Line(x2-6, y-4, x2+7, y-4, QPen(Qt::red,2)));
Lines.append(new qucs::Line(x2, y-7, x2+6, y-4, QPen(Qt::red,2)));
Lines.append(new qucs::Line(x2, y-1, x2+6, y-4, QPen(Qt::red,2)));
return -1;
}
}
return colWidth;
}
// ------------------------------------------------------------
void Diagram::setCenter(int x, int y, bool relative)
{
if(relative) {
cx += x; cy += y;
}
else {
cx = x; cy = y;
}
}
// -------------------------------------------------------
void Diagram::getCenter(int& x, int& y)
{
x = cx + (x2 >> 1);
y = cy - (y2 >> 1);
}
// ------------------------------------------------------------
Diagram* Diagram::newOne()
{
return new Diagram();
}
// ------------------------------------------------------------
void Diagram::finishMarkerCoordinates(float& fCX, float& fCY) const
{
if(!insideDiagram(fCX, fCY)) {
fCX = float(x2 >> 1);
fCY = float(y2 >> 1);
}
}
// ------------------------------------------------------------
QString Diagram::save()
{
QString s = "<"+Name+" "+QString::number(cx)+" "+QString::number(cy)+" ";
s += QString::number(x2)+" "+QString::number(y2)+" ";
char c = '0';
if(xAxis.GridOn) c |= 1;
if(hideLines) c |= 2;
s += c;
s += " " + GridPen.color().name() + " " + QString::number(GridPen.style());
if(xAxis.log) s+= " 1"; else s += " 0";
c = '0';
if(yAxis.log) c |= 1;
if(zAxis.log) c |= 2;
s += c;
if(xAxis.autoScale) s+= " 1 ";
else s+= " 0 ";
s += QString::number(xAxis.limit_min) + " ";
s += QString::number(xAxis.step) + " ";
s += QString::number(xAxis.limit_max);
if(yAxis.autoScale) s+= " 1 ";
else s+= " 0 ";
s += QString::number(yAxis.limit_min) + " ";
s += QString::number(yAxis.step) + " ";
s += QString::number(yAxis.limit_max);
if(zAxis.autoScale) s+= " 1 ";
else s+= " 0 ";
s += QString::number(zAxis.limit_min) + " ";
s += QString::number(zAxis.step) + " ";
s += QString::number(zAxis.limit_max) + " ";
s += QString::number(rotX)+" "+QString::number(rotY)+" "+
QString::number(rotZ);
// labels can contain spaces -> must be last items in the line
s += " \""+xAxis.Label+"\" \""+yAxis.Label+"\" \""+zAxis.Label+"\">\n";
foreach(Graph *pg, Graphs)
s += pg->save()+"\n";
s += " </"+Name+">";
return s;
}
// ------------------------------------------------------------
bool Diagram::load(const QString& Line, QTextStream *stream)
{
bool ok;
QString s = Line;
if(s.at(0) != '<') return false;
if(s.at(s.length()-1) != '>') return false;
s = s.mid(1, s.length()-2); // cut off start and end character
QString n;
n = s.section(' ',1,1); // cx
cx = n.toInt(&ok);
if(!ok) return false;
n = s.section(' ',2,2); // cy
cy = n.toInt(&ok);
if(!ok) return false;
n = s.section(' ',3,3); // x2
x2 = n.toInt(&ok);
if(!ok) return false;
n = s.section(' ',4,4); // y2
y2 = n.toInt(&ok);
if(!ok) return false;
char c;
n = s.section(' ',5,5); // GridOn
c = n.at(0).toLatin1() - '0';
xAxis.GridOn = yAxis.GridOn = (c & 1) != 0;
hideLines = (c & 2) != 0;
n = s.section(' ',6,6); // color for GridPen
QColor co;
co.setNamedColor(n);
GridPen.setColor(co);
if(!GridPen.color().isValid()) return false;
n = s.section(' ',7,7); // line style
GridPen.setStyle((Qt::PenStyle)n.toInt(&ok));
if(!ok) return false;
n = s.section(' ',8,8); // xlog, ylog
xAxis.log = n.at(0) != '0';
c = n.at(1).toLatin1();
yAxis.log = ((c - '0') & 1) == 1;
zAxis.log = ((c - '0') & 2) == 2;
n = s.section(' ',9,9); // xAxis.autoScale
if(n.at(0) != '"') { // backward compatible
if(n == "1") xAxis.autoScale = true;
else xAxis.autoScale = false;
n = s.section(' ',10,10); // xAxis.limit_min
xAxis.limit_min = n.toDouble(&ok);
if(!ok) return false;
n = s.section(' ',11,11); // xAxis.step
xAxis.step = n.toDouble(&ok);
if(!ok) return false;
n = s.section(' ',12,12); // xAxis.limit_max
xAxis.limit_max = n.toDouble(&ok);
if(!ok) return false;
n = s.section(' ',13,13); // yAxis.autoScale
if(n == "1") yAxis.autoScale = true;
else yAxis.autoScale = false;
n = s.section(' ',14,14); // yAxis.limit_min
yAxis.limit_min = n.toDouble(&ok);
if(!ok) return false;
n = s.section(' ',15,15); // yAxis.step
yAxis.step = n.toDouble(&ok);
if(!ok) return false;
n = s.section(' ',16,16); // yAxis.limit_max
yAxis.limit_max = n.toDouble(&ok);
if(!ok) return false;
n = s.section(' ',17,17); // zAxis.autoScale
if(n == "1") zAxis.autoScale = true;
else zAxis.autoScale = false;
n = s.section(' ',18,18); // zAxis.limit_min
zAxis.limit_min = n.toDouble(&ok);
if(!ok) return false;
n = s.section(' ',19,19); // zAxis.step
zAxis.step = n.toDouble(&ok);
if(!ok) return false;
n = s.section(' ',20,20); // zAxis.limit_max
zAxis.limit_max = n.toDouble(&ok);
if(!ok) return false;
n = s.section(' ',21,21); // rotX
if(n.at(0) != '"') { // backward compatible
rotX = n.toInt(&ok);
if(!ok) return false;
n = s.section(' ',22,22); // rotY
rotY = n.toInt(&ok);
if(!ok) return false;
n = s.section(' ',23,23); // rotZ
rotZ = n.toInt(&ok);
if(!ok) return false;
}
}
xAxis.Label = s.section('"',1,1); // xLabel
yAxis.Label = s.section('"',3,3); // yLabel left
zAxis.Label = s.section('"',5,5); // yLabel right
Graph *pg;
// .......................................................
// load graphs of the diagram
while(!stream->atEnd()) {
s = stream->readLine();
s = s.trimmed();
if(s.isEmpty()) continue;
if(s == ("</"+Name+">")) return true; // found end tag ?
if(s.section(' ', 0,0) == "<Mkr") {
// .......................................................
// load markers of the diagram
pg = Graphs.last();
if(!pg) return false;
assert(pg->parentDiagram() == this);
Marker *pm = new Marker(pg);
if(!pm->load(s)) {
delete pm;
return false;
}
pg->Markers.append(pm);
continue;
}
pg = new Graph(this);
if(!pg->load(s)) {
delete pg;
return false;
}
Graphs.append(pg);
}
return false; // end tag missing
}
// --------------------------------------------------------------
void Diagram::calcSmithAxisScale(Axis *Axis, int& GridX, int& GridY)
{
xAxis.low = xAxis.min;
xAxis.up = xAxis.max;
Axis->low = 0.0;
if(fabs(Axis->min) > Axis->max)
Axis->max = fabs(Axis->min); // also fit negative values
if(Axis->autoScale) {
if(Axis->max > 1.01) Axis->up = 1.05*Axis->max;
else Axis->up = 1.0;
GridX = GridY = 4;
}
else {
Axis->up = Axis->limit_max = fabs(Axis->limit_max);
GridX = GridY = int(Axis->step);
}
}
// ------------------------------------------------------------
void Diagram::createSmithChart(Axis *Axis, int Mode)
{
int GridX; // number of arcs with re(z)=const
int GridY; // number of arcs with im(z)=const
calcSmithAxisScale(Axis, GridX, GridY);
if(!xAxis.GridOn) return;
bool Zplane = ((Mode & 1) == 1); // impedance or admittance chart ?
bool Above = ((Mode & 2) == 2); // paint upper half ?
bool Below = ((Mode & 4) == 4); // paint lower half ?
int dx2 = x2>>1;
double im, n_cos, n_sin, real, real1, real2, root;
double rMAXq = Axis->up*Axis->up;
int theta, beta, phi, len, m, x, y;
int R1 = int(x2/Axis->up + 0.5);
// ....................................................
// draw arcs with im(z)=const
for(m=1; m<GridY; m++) {
n_sin = pi*double(m)/double(GridY);
n_cos = cos(n_sin);
n_sin = sin(n_sin);
im = (1.0-n_cos)/n_sin * pow(Axis->up,0.7); // up^0.7 is beauty correction
y = int(im/Axis->up*x2 + 0.5); // diameter
if(Axis->up <= 1.0) { // Smith chart with |r|=1
beta = int(16.0*180.0*atan2(n_sin-im,n_cos-1.0)/pi - 0.5);
if(beta<0) beta += 16*360;
theta = 16*270-beta;
}
else { // Smith chart with |r|>1
im = 1.0/im;
real = (rMAXq+1.0)/(rMAXq-1.0);
root = real*real - im*im - 1.0;
if(root < 0.0) { // circle lies completely within the Smith chart ?
beta = 0; // yes, ...
theta = 16*360; // ... draw whole circle
}
else {
// calculate both intersections with most outer circle
real1 = sqrt(root)-real;
real2 = -sqrt(root)-real;
root = (real1+1.0)*(real1+1.0) + im*im;
n_cos = (real1*real1 + im*im - 1.0) / root;
n_sin = 2.0*im / root;
beta = int(16.0*180.0*atan2(n_sin-1.0/im,n_cos-1.0)/pi);
if(beta<0) beta += 16*360;
root = (real2+1.0)*(real2+1.0) + im*im;
n_cos = (real2*real2 + im*im - 1.0) / root;
n_sin = 2.0*im / root;
theta = int(16.0*180.0*atan2(n_sin-1/im,n_cos-1)/pi);
if(theta<0) theta += 16*360;
theta = theta - beta; // arc length
if(theta < 0) theta = 16*360+theta;
}
}
if(Zplane)
x = (x2 + R1 - y) >> 1;
else {
x = (x2 - R1 - y) >> 1;
beta = 16*180 - beta - theta; // mirror
if(beta < 0) beta += 16*360; // angle has to be > 0
}
if(Above)
Arcs.append(new struct qucs::Arc(x, dx2+y, y, y, beta, theta, GridPen));
if(Below)
Arcs.append(new struct qucs::Arc(x, dx2, y, y, 16*360-beta-theta, theta, GridPen));
}
// ....................................................
// draw arcs with Re(z)=const
theta = 0; // arc length
beta = 16*180; // start angle
if(Above) { beta = 0; theta = 16*180; }
if(Below) theta += 16*180;
for(m=1; m<GridX; m++) {
im = m*(Axis->up+1.0)/GridX - Axis->up;
y = int((1.0-im)/Axis->up*double(dx2) + 0.5); // diameter
if(Zplane)
x = ((x2+R1)>>1) - y;
else
x = (x2-R1)>>1;
if(fabs(fabs(im)-1.0) > 0.2) // if too near to |r|=1, it looks ugly
Arcs.append(new struct qucs::Arc(x, (x2+y)>>1, y, y, beta, theta, GridPen));
if(Axis->up > 1.0) { // draw arcs on the rigth-handed side ?
im = 1.0-im;
im = (rMAXq-1.0)/(im*(im/2.0+1.0)) - 1.0;
if(Zplane) x += y;
else x -= y;
if(im >= 1.0)
Arcs.append(new struct qucs::Arc(x, (x2+y)>>1, y, y, beta, theta, GridPen));
else {
phi = int(16.0*180.0/pi*acos(im));
len = 16*180-phi;
if(Above && Below) len += len;
else if(Below) phi = 16*180;
if(!Zplane) phi += 16*180;
Arcs.append(new struct qucs::Arc(x, (x2+y)>>1, y, y, phi, len, GridPen));
}
}
}
// ....................................................
if(Axis->up > 1.0) { // draw circle with |r|=1 ?
x = (x2-R1) >> 1;
y = (x2+R1) >> 1;
Arcs.append(new struct qucs::Arc(x, y, R1, R1, beta, theta, QPen(Qt::black,0)));
// vertical line Re(r)=1 (visible only if |r|>1)
if(Zplane) x = y;
y = int(sqrt(rMAXq-1)/Axis->up*dx2 + 0.5);
if(Above) m = y;
else m = 0;
if(!Below) y = 0;
Lines.append(new qucs::Line(x, dx2+m, x, dx2-y, GridPen));
if(Below) y = 4;
else y = y2-4-QucsSettings.font.pointSize();
Texts.append(new Text(0, y, misc::StringNum(Axis->up)));
}
}
// --------------------------------------------------------------
void Diagram::calcPolarAxisScale(Axis *Axis, double& numGrids,
double& GridStep, double& zD)
{
if(Axis->autoScale) { // auto-scale or user defined limits ?
double Expo, Base;
numGrids = floor(double(x2)/80.0); // minimal grid is 40 pixel
Expo = floor(log10(Axis->max/numGrids));
Base = Axis->max/numGrids/pow(10.0,Expo);// get first significant digit
if(Base < 3.5) { // use only 1, 2 and 5, which ever is best fitted
if(Base < 1.5) Base = 1.0;
else Base = 2.0;
}
else {
if(Base < 7.5) Base = 5.0;
else { Base = 1.0; Expo++; }
}
GridStep = Base * pow(10.0,Expo); // grid distance in real values
numGrids -= floor(numGrids - Axis->max/GridStep); // correct num errors
Axis->up = GridStep*numGrids;
zD = double(x2) / numGrids; // grid distance in pixel
}
else { // no auto-scale
Axis->up = Axis->limit_max = fabs(Axis->limit_max);
GridStep = Axis->step;
zD = double(x2) / Axis->limit_max * Axis->step; // grid distance in pixel
if(fabs(zD) < 2.0) { // if grid too small, then no grid
zD = double(x2);
GridStep = Axis->step = Axis->up;
numGrids = 1.0;
}
else numGrids = Axis->limit_max / Axis->step;
}
}
// ------------------------------------------------------------
void Diagram::createPolarDiagram(Axis *Axis, int Mode)
{
xAxis.low = xAxis.min;
xAxis.up = xAxis.max;
Axis->low = 0.0;
if(fabs(Axis->min) > Axis->max)
Axis->max = fabs(Axis->min); // also fit negative values
bool Above = ((Mode & 1) == 1); // paint upper half ?
bool Below = ((Mode & 2) == 2); // paint lower half ?
int i, z, tmp;
if(Above) i = y2; else i = y2>>1;
if(Below) z = 0; else z = y2>>1;
// y line
Lines.append(new qucs::Line(x2>>1, i, x2>>1, z, GridPen));
int len = 0; // arc length
int beta = 16*180; // start angle
if(Above) { beta = 0; len = 16*180; }
if(Below) len += 16*180;
int phi, tPos;
int tHeight = QucsSettings.font.pointSize() + 5;
if(!Below) tPos = (y2>>1) + 3;
else tPos = (y2>>1) - tHeight + 3;
double Expo, Base, numGrids, GridStep, zD;
if(xAxis.GridOn) {
calcPolarAxisScale(Axis, numGrids, GridStep, zD);
double zDstep = zD;
double GridNum = 0.0;
for(i=int(numGrids); i>1; i--) { // create all grid circles
z = int(zD);
GridNum += GridStep;
Texts.append(new Text(((x2+z)>>1)-10, tPos, misc::StringNiceNum(GridNum)));
phi = int(16.0*180.0/pi*atan(double(2*tHeight)/zD));
if(!Below) tmp = beta + phi;
else tmp = beta;
Arcs.append(new struct qucs::Arc((x2-z)>>1, (y2+z)>>1, z, z, tmp, len-phi,
GridPen));
zD += zDstep;
}
}
else { // of "if(GridOn)"
Expo = floor(log10(Axis->max));
Base = ceil(Axis->max/pow(10.0,Expo) - 0.01);
Axis->up = Base * pow(10.0,Expo); // separate Base * 10^Expo
}
// create outer circle
Texts.append(new Text(x2-8, tPos, misc::StringNiceNum(Axis->up)));
phi = int(16.0*180.0/pi*atan(double(2*tHeight)/double(x2)));
if(!Below) tmp = phi;
else tmp = 0;
Arcs.append(new struct qucs::Arc(0, y2, x2, y2, tmp, 16*360-phi, QPen(Qt::black,0)));
// get size of text using the screen-compatible metric
QFontMetrics metrics(QucsSettings.font, 0);
QSize r = metrics.size(0, Texts.last()->s); // width of text
len = x2+r.width()-4; // more space at the right
if(len > x3) x3 = len;
}
/*!
Calculations for Cartesian diagrams (RectDiagram and Rect3DDiagram).
\param Axis - pointer to the axis to scale
\param Dist - length of axis in pixel on the screen
\return value: "true" if axis runs from largest to smallest value
\param[out] GridNum - number where the first numbered grid is placed
\param[out] GridStep - distance from one grid to the next
\param[out] zD - screen coordinate where the first grid is placed
\param[out] zDstep - distance on screen from one grid to the next
*/
bool Diagram::calcAxisScale(Axis *Axis, double& GridNum, double& zD,
double& zDstep, double& GridStep, double Dist)
{
bool back=false;
double numGrids, Base, Expo, corr;
if(Axis->autoScale) {
if(fabs(Axis->max-Axis->min) < 1e-200) {
if((Axis->max == 0.0) && (Axis->min == 0.0)) {
Axis->up = 1.0;
Axis->low = -1.0;
}
else { // if max = min, double difference
Axis->up = Axis->max + fabs(Axis->max);
Axis->low = Axis->min - fabs(Axis->min);
}
}
else if(Axis != &xAxis) {
// keep a small bounding between graph and diagram limit
Axis->up = Axis->max + 0.1*(Axis->max-Axis->min);
Axis->low = Axis->min - 0.1*(Axis->max-Axis->min);
}
else {
Axis->up = Axis->max; // normal case for x axis
Axis->low = Axis->min;
}
numGrids = floor(Dist/60.0); // minimal grid is 60 pixel
if(numGrids < 1.0) Base = Axis->up-Axis->low;
else Base = (Axis->up-Axis->low)/numGrids;
Expo = floor(log10(Base));
Base = Base/pow(10.0,Expo); // separate first significant digit
if(Base < 3.5) { // use only 1, 2 and 5, which ever is best fitted
if(Base < 1.5) Base = 1.0;
else Base = 2.0;
}
else {
if(Base < 7.5) Base = 5.0;
else { Base = 1.0; Expo++; }
}
GridStep = Base * pow(10.0,Expo); // grid distance in real coordinates
corr = floor((Axis->up-Axis->low)/GridStep - numGrids);
if(corr < 0.0) corr++;
numGrids += corr; // correct rounding faults
// upper y boundary ...........................
zD = fabs(fmod(Axis->up, GridStep));// expand grid to upper diagram edge ?
GridNum = zD/GridStep;
if((1.0-GridNum) < 1e-10) GridNum = 0.0; // fix rounding errors
if(Axis->up <= 0.0) {
if(GridNum < 0.3) { Axis->up += zD; zD = 0.0; }
}
else if(GridNum > 0.7) Axis->up += GridStep-zD;
else if(GridNum < 0.1)
if(GridNum*Dist >= 1.0)// more than 1 pixel above ?
Axis->up += 0.3*GridStep; // beauty correction
// lower y boundary ...........................
zD = fabs(fmod(Axis->low, GridStep));// expand grid to lower diagram edge ?
GridNum = zD/GridStep;
if((1.0-GridNum) < 1e-10) zD = GridNum = 0.0; // fix rounding errors
if(Axis->low <= 0.0) {
if(GridNum > 0.7) { Axis->low -= GridStep-zD; zD = 0.0; }
else if(GridNum < 0.1)
if(GridNum*Dist >= 1.0) { // more than 1 pixel above ?
Axis->low -= 0.3*GridStep; // beauty correction
zD += 0.3*GridStep;
}
}
else {
if(GridNum > 0.3) {
zD = GridStep-zD;
if(GridNum > 0.9) {
if((1.0-GridNum)*Dist >= 1.0) { // more than 1 pixel above ?
Axis->low -= 0.3*GridStep; // beauty correction
zD += 0.3*GridStep;
}
}
}
else { Axis->low -= zD; zD = 0.0; }
}
GridNum = Axis->low + zD;
zD /= (Axis->up-Axis->low)/Dist;
}
else { // user defined limits
zD = 0.0;
Axis->low = GridNum = Axis->limit_min;
Axis->up = Axis->limit_max;
if(Axis->limit_max < Axis->limit_min)
back = true;
GridStep = Axis->step;
}
zDstep = GridStep/(Axis->up-Axis->low)*Dist; // grid in pixel
if(fabs(zDstep) < 2.0) { // if grid too small, then no grid
zDstep = Dist;
GridStep = Axis->step = Axis->up-Axis->low;
}
return back;
}
/*!
Calculations for logarithmical Cartesian diagrams
(RectDiagram and Rect3DDiagram).
\param Axis - pointer to the axis to scale
\param len - length of axis in pixel on the screen
\return value: "true" if axis runs from largest to smallest value
\param[out] z - screen coordinate where the first grid is placed
\param[out] zD - number where the first grid is placed
\param[out] zDstep - number increment from one grid to the next
\param[out] coor - scale factor for calculate screen coordinate
\todo use this as example to document other methods
*/
bool Diagram::calcAxisLogScale(Axis *Axis, int& z, double& zD,
double& zDstep, double& corr, int len)
{
if(fabs(Axis->max-Axis->min) < 1e-200) { // if max = min, double difference
Axis->max *= 10.0;
Axis->min /= 10.0;
}
Axis->low = Axis->min; Axis->up = Axis->max;
if(!Axis->autoScale) {
Axis->low = Axis->limit_min;
Axis->up = Axis->limit_max;
}
bool mirror=false, mirror2=false;
double tmp;
if(Axis->up < 0.0) { // for negative values
tmp = Axis->low;
Axis->low = -Axis->up;
Axis->up = -tmp;
mirror = true;
}
double Base, Expo;
if(Axis->autoScale) {
if(mirror) { // set back values ?
tmp = Axis->min;
Axis->min = -Axis->max;
Axis->max = -tmp;
}
Expo = floor(log10(Axis->max));
Base = Axis->max/pow(10.0,Expo);
if(Base > 3.0001) Axis->up = pow(10.0,Expo+1.0);
else if(Base < 1.0001) Axis->up = pow(10.0,Expo);
else Axis->up = 3.0 * pow(10.0,Expo);
Expo = floor(log10(Axis->min));
Base = Axis->min/pow(10.0,Expo);
if(Base < 2.999) Axis->low = pow(10.0,Expo);
else if(Base > 9.999) Axis->low = pow(10.0,Expo+1.0);
else Axis->low = 3.0 * pow(10.0,Expo);
corr = double(len) / log10(Axis->up / Axis->low);
z = 0;
zD = Axis->low;
zDstep = pow(10.0,Expo);
if(mirror) { // set back values ?
tmp = Axis->min;
Axis->min = -Axis->max;
Axis->max = -tmp;
}
}
else { // user defined limits
if(Axis->up < Axis->low) {
tmp = Axis->low;
Axis->low = Axis->up;
Axis->up = tmp;
mirror2 = true;
}
Expo = floor(log10(Axis->low));
Base = ceil(Axis->low/pow(10.0,Expo));
zD = Base * pow(10.0, Expo);
zDstep = pow(10.0,Expo);
if(zD > 9.5*zDstep) zDstep *= 10.0;
corr = double(len) / log10(Axis->up / Axis->low);
z = int(corr*log10(zD / Axis->low) + 0.5); // int(..) implies floor(..)
if(mirror2) { // set back values ?
tmp = Axis->low;
Axis->low = Axis->up;
Axis->up = tmp;
}
}
if(mirror) { // set back values ?
tmp = Axis->low;
Axis->low = -Axis->up;
Axis->up = -tmp;
}
if(mirror == mirror2) return false;
else return true;
}
// --------------------------------------------------------------
bool Diagram::calcYAxis(Axis *Axis, int x0)
{
int z, w;
double GridStep, corr, zD, zDstep, GridNum;
QString tmp;
// get size of text using the screen-compatible metric
QFontMetrics metrics(QucsSettings.font, 0);
int maxWidth = 0;
bool back = false;
if(Axis->log) {
if(Axis->autoScale) {
if(Axis->max*Axis->min <= 0.0) return false; // invalid
}
else if(Axis->limit_min*Axis->limit_max <= 0.0) return false; // invalid
back = calcAxisLogScale(Axis, z, zD, zDstep, corr, y2);
if(back) z = y2;
while((z <= y2) && (z >= 0)) { // create all grid lines
if(Axis->GridOn) if(z < y2) if(z > 0)
Lines.prepend(new qucs::Line(0, z, x2, z, GridPen)); // y grid
if((zD < 1.5*zDstep) || (z == 0)) {
tmp = misc::StringNiceNum(zD);
if(Axis->up < 0.0) tmp = '-'+tmp;
w = metrics.boundingRect(tmp).width(); // width of text
if(maxWidth < w) maxWidth = w;
if(x0 > 0)
Texts.append(new Text(x0+7, z-6, tmp)); // text aligned left
else
Texts.append(new Text(-w-7, z-6, tmp)); // text aligned right
// y marks
Lines.append(new qucs::Line(x0-5, z, x0+5, z, QPen(Qt::black,0)));
}
zD += zDstep;
if(zD > 9.5*zDstep) zDstep *= 10.0;
if(back) {
z = int(corr*log10(zD / fabs(Axis->up)) + 0.5); // int() implies floor()
z = y2 - z;
}
else
z = int(corr*log10(zD / fabs(Axis->low)) + 0.5);// int() implies floor()
}
}
else { // not logarithmical
back = calcAxisScale(Axis, GridNum, zD, zDstep, GridStep, double(y2));
double Expo;
if(Axis->up == 0.0) Expo = log10(fabs(Axis->up-Axis->low));
else Expo = log10(fabs(Axis->up));
zD += 0.5; // perform rounding
z = int(zD); // "int(...)" implies "floor(...)"
while((z <= y2) && (z >= 0)) { // create all grid lines
if(fabs(GridNum) < 0.01*pow(10.0, Expo)) GridNum = 0.0;// make 0 really 0
tmp = misc::StringNiceNum(GridNum);
w = metrics.boundingRect(tmp).width(); // width of text
if(maxWidth < w) maxWidth = w;
if(x0 > 0)
Texts.append(new Text(x0+8, z-6, tmp)); // text aligned left
else
Texts.append(new Text(-w-7, z-6, tmp)); // text aligned right
GridNum += GridStep;
if(Axis->GridOn) if(z < y2) if(z > 0)
Lines.prepend(new qucs::Line(0, z, x2, z, GridPen)); // y grid
Lines.append(new qucs::Line(x0-5, z, x0+5, z, QPen(Qt::black,0))); // y marks
zD += zDstep;
z = int(zD);
}
} // of "if(ylog) ... else ..."
if(x0 == 0) x1 = maxWidth+14;
else x3 = x2+maxWidth+14;
return true;
}
// convenience wrappers
bool Diagram::insideDiagramP(Graph::iterator const& p) const
{
float f1 = p->getScrX();
float f2 = p->getScrY();
return insideDiagram(f1,f2);
}
void Diagram::calcCoordinateP (const double*x, const double*y, const double*z, Graph::iterator& p, Axis const* A) const
{
float f1, f2;
calcCoordinate(x, y, z, &f1, &f2, A);
p->setScr(f1, f2);
};
// vim:ts=8:sw=2:noet