qucs_s/qucs-transcalc/coplanar.cpp
2022-08-26 15:55:54 +03:00

303 lines
8.1 KiB
C++

/*
* coplanar.cpp - coplanar class implementation
*
* Copyright (C) 2008 Michael Margraf <michael.margraf@alumni.tu-berlin.de>
* Copyright (C) 2005, 2006 Stefan Jahn <stefan@lkcc.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this package; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cmath>
#include <limits>
#include <float.h>
#include "units.h"
#include "transline.h"
#include "coplanar.h"
coplanar::coplanar() : transline()
{
backMetal = false;
}
groundedCoplanar::groundedCoplanar() : coplanar()
{
backMetal = true;
}
// -------------------------------------------------------------------
void coplanar::getProperties()
{
f = getProperty ("Freq", UNIT_FREQ, FREQ_HZ);
w = getProperty ("W", UNIT_LENGTH, LENGTH_M);
s = getProperty ("S", UNIT_LENGTH, LENGTH_M);
len = getProperty ("L", UNIT_LENGTH, LENGTH_M);
h = getProperty ("H", UNIT_LENGTH, LENGTH_M);
t = getProperty ("T", UNIT_LENGTH, LENGTH_M);
er = getProperty ("Er");
tand = getProperty ("Tand");
sigma = getProperty ("Cond");
Z0 = getProperty ("Z0", UNIT_RES, RES_OHM);
ang_l = getProperty ("Ang_l", UNIT_ANG, ANG_RAD);
}
// -------------------------------------------------------------------
void coplanar::calc()
{
skindepth = skin_depth();
// other local variables (quasi-static constants)
double k1, kk1, kpk1, k2, k3, q1, q2, q3 = 0, qz, er0 = 0;
double zl_factor;
// compute the necessary quasi-static approx. (K1, K3, er(0) and Z(0))
k1 = w / (w + s + s);
kk1 = ellipk (k1);
kpk1 = ellipk (sqrt (1 - k1 * k1));
q1 = kk1 / kpk1;
// backside is metal
if (backMetal) {
k3 = tanh ((pi / 4) * (w / h)) / tanh ((pi / 4) * (w + s + s) / h);
q3 = KoverKp(k3);
qz = 1 / (q1 + q3);
er0 = 1 + q3 * qz * (er - 1);
zl_factor = ZF0 / 2 * qz;
}
// backside is air
else {
k2 = sinh ((pi / 4) * (w / h)) / sinh ((pi / 4) * (w + s + s) / h);
q2 = KoverKp(k2);
er0 = 1 + (er - 1) / 2 * q2 / q1;
zl_factor = ZF0 / 4 / q1;
}
// adds effect of strip thickness
if (t > 0) {
double d, ke, qe;
d = (t * 1.25 / pi) * (1 + log (4 * pi * w / t));
// modifies k1 accordingly (k1 = ke)
ke = k1 + (1 - k1 * k1) * d / 2 / s;
qe = KoverKp(ke);
// backside is metal
if (backMetal) {
qz = 1 / (qe + q3);
//er0 = 1 + q3 * qz * (er - 1);
zl_factor = ZF0 / 2 * qz;
}
// backside is air
else {
zl_factor = ZF0 / 4 / qe;
}
// modifies er0 as well
er0 = er0 - (0.7 * (er0 - 1) * t / s) / (q1 + (0.7 * t / s));
}
// pre-compute square roots
double sr_er = sqrt (er);
double sr_er0 = sqrt (er0);
// cut-off frequency of the TE0 mode
double fte = (C0 / 4) / (h * sqrt (er - 1));
// dispersion factor G
double p = log (w / h);
double u = 0.54 - (0.64 - 0.015 * p) * p;
double v = 0.43 - (0.86 - 0.54 * p) * p;
double G = exp (u * log (w / s) + v);
// loss constant factors (computed only once for efficency sake)
double ac = 0;
if (t > 0) {
// equations by GHIONE
double n = (1 - k1) * 8 * pi / (t * (1 + k1));
double a = w / 2;
double b = a + s;
ac = (pi + log (n * a)) / a + (pi + log (n * b)) / b;
}
double ac_factor = ac / (4 * ZF0 * kk1 * kpk1 * (1 - k1 * k1));
double ad_factor = (er / (er - 1)) * tand * pi / C0;
// ....................................................
double sr_er_f = sr_er0;
// add the dispersive effects to er0
sr_er_f += (sr_er - sr_er0) / (1 + G * pow (f / fte, -1.8));
// for now, the loss are limited to strip losses (no radiation
// losses yet) losses in neper/length
atten_cond = 20.0 / log(10.0) * len
* ac_factor * sr_er0 * sqrt (pi * MU0 * f / sigma);
atten_dielectric = 20.0 / log(10.0) * len
* ad_factor * f * (sr_er_f * sr_er_f - 1) / sr_er_f;
ang_l = 2.0 * pi * len * sr_er_f * f / C0; /* in radians */
er_eff = sr_er_f * sr_er_f;
Z0 = zl_factor / sr_er_f;
}
// -------------------------------------------------------------------
void coplanar::show_results()
{
setProperty ("Z0", Z0, UNIT_RES, RES_OHM);
setProperty ("Ang_l", ang_l, UNIT_ANG, ANG_RAD);
setResult (0, er_eff, "");
setResult (1, atten_cond, "dB");
setResult (2, atten_dielectric, "dB");
double val = convertProperty ("T", skindepth, UNIT_LENGTH, LENGTH_M);
setResult (3, val, getUnit ("T"));
}
// -------------------------------------------------------------------
void coplanar::analyze()
{
getProperties();
/* compute coplanar parameters */
calc();
/* print results in the subwindow */
show_results();
}
// -------------------------------------------------------------------
int coplanar::synthesize()
{
double Z0_dest, Z0_current, Z0_result, increment, slope, error;
int iteration;
const int maxiter = 100;
getProperties();
/* required value of Z0 */
Z0_dest = Z0;
/* Newton's method */
iteration = 0;
/* compute coplanar parameters */
calc();
Z0_current = Z0;
error = std::abs(Z0_dest - Z0_current);
while (error > MAX_ERROR) {
iteration++;
if(isSelected ("W")) {
increment = w / 100.0;
w += increment;
}
else {
increment = s / 100.0;
s += increment;
}
/* compute coplanar parameters */
calc();
Z0_result = Z0;
/* f(w(n)) = Z0 - Z0(w(n)) */
/* f'(w(n)) = -f'(Z0(w(n))) */
/* f'(Z0(w(n))) = (Z0(w(n)) - Z0(w(n+delw))/delw */
/* w(n+1) = w(n) - f(w(n))/f'(w(n)) */
slope = (Z0_result - Z0_current) / increment;
slope = (Z0_dest - Z0_current) / slope - increment;
if(isSelected ("W"))
w += slope;
else
s += slope;
if (w <= 0.0)
w = increment;
if (s <= 0.0)
s = increment;
/* find new error */
/* compute coplanar parameters */
calc();
Z0_current = Z0;
error = std::abs(Z0_dest - Z0_current);
if (iteration > maxiter)
break;
}
setProperty ("W", w, UNIT_LENGTH, LENGTH_M);
setProperty ("S", s, UNIT_LENGTH, LENGTH_M);
/* calculate physical length */
ang_l = getProperty ("Ang_l", UNIT_ANG, ANG_RAD);
len = C0 / f / sqrt(er_eff) * ang_l / 2.0 / pi; /* in m */
setProperty ("L", len, UNIT_LENGTH, LENGTH_M);
/* compute coplanar parameters */
calc();
/* print results in the subwindow */
show_results();
if (iteration > maxiter)
return -1;
else
return 0;
}
/* *****************************************************************
********** **********
********** mathematical functions **********
********** **********
***************************************************************** */
/* The function computes the complete elliptic integral of first kind
K(k) using the arithmetic-geometric mean algorithm (AGM) found e.g.
in Abramowitz and Stegun (17.6.1).
Note that the argument of the function here is the elliptic modulus k
and not the parameter m=k^2 . */
double coplanar::ellipk (double k) {
if ((k < 0.0) || (k >= 1.0))
// we use only the range from 0 <= k < 1
return std::numeric_limits<double>::quiet_NaN();
double a = 1.0;
double b = sqrt(1-k*k);
double c = k;
while (c > NR_EPSI) {
double tmp = (a + b) / 2.0;
c = (a - b) / 2.0;
b = sqrt(a * b);
a = tmp;
}
return (pi_over_2 / a);
}
double coplanar::KoverKp(double k) {
if ((k < 0.0) || (k >= 1.0))
return std::numeric_limits<double>::quiet_NaN();
return (ellipk(k) / ellipk(sqrt(1-k*k)));
}