qucs_s/library/AnalogueCM.lib
2022-09-24 17:56:28 +03:00

223 lines
8.5 KiB
Plaintext

<Qucs Library 0.0.19 "AnalogueCM">
<Component Esakitd>
<Description>
Esaki tunnel diode model:
4 April 2016 Mike Brinson mbrin72043@yahoo.co.uk
Parameters; Description; Default value
is; Saturation current (A); 1e-12
ip; Peak current (A); 5e-3
iv; Valley current (A); 370e-6
vp; Peak voltage (V); 50e-3
vv; Valley current (V); 0.37
a2; Excess current exponential factor (1/V); 5
ctd; Diode capacitance at zero volts bias (F); 0.5e-12
temp; Diode temperature (Celsius); 26.58
Test examples: (1) Test_EsakiTD_DC.sch, (2) TD_oscillator.sch
References
[1] S.M. Sze and Kwok K. Ng,"Physics of semiconductor devices,
Third Edition, 2007, John Wiley & Sons, New York, ISBN-13: 978-0-471,
ISBN-10: 0-471-1423-5.
[2] Messaadi Lotfi and Dibi Zohir, "A SPICE behavioural model of
tunnel diode: simulation and application" International Conference
on Automation, Control Engineering and Computer Science (ACECS'14),
Proceedings - IPCO-2014, pp 186-191, ISSN 2356-5608.
[3] M. Nikhil, S. Bowyer, J. Huckaby and M.B Steer, "Modelling of an
Esaki tunnel diode in a circuit simulator", Active and Passive
Electronic Components, Vol. 2011, Article ID 830182, 8 pages,
doi:10.1155/2011/830182.
</Description>
<Spice>
.SUBCKT AnalogueCM_Esakitd gnd A C is=1e-12 ip=5e-3
+ iv=370e-6 vp=0.05 vv=0.37 a2=5 ctd=0.5e-12 temp=26.85
C1 A C {ctd}
A1 %gd(A C) modtd
Rp C A 1e9
.MODEL modtd etd ( is ={is} ip = {ip}
+ iv = {iv} vp = {vp} vv = {vv} a2 = {a2} temp= {temp} )
.ENDS
</Spice>
<SpiceAttach "etd.mod" "etd.ifs">
<Model>
.Def: AnalogueCM_Esakitd _net0 _net1
.DefEnd
</Model>
<Symbol>
<Line -20 -20 0 40 #000080 2 1>
<Line -60 0 40 0 #000080 2 1>
<Line -20 20 30 -20 #000080 2 1>
<Line -20 -20 30 20 #000080 2 1>
<Line 10 0 30 0 #000080 2 1>
<Line 10 -20 0 40 #00007f 4 1>
<Line 0 -20 10 0 #00007f 4 1>
<Line 0 20 10 0 #00007f 4 1>
<.ID -40 54 Esakitd "1=is=1e-12==" "1=ip=5e-3==" "1=iv=370e-6==" "1=vp=0.05==" "1=vv=0.37==" "1=a2=5==" "1=ctd=0.5e-12==" "1=temp=26.85==">
<Ellipse -35 -30 60 60 #aa0000 3 1 #c0c0c0 1 0>
<.PortSym 40 0 2 180>
<.PortSym -60 0 1 0>
</Symbol>
</Component>
/*-------------------------------------------------------------------------------------------------------------------------------------------------------*/
<Component FowlerNDiodeXSPICE>
<Description>
Fowler-Nordheim diode model:
14 September 2017 Mike Brinson mbrin72043@yahoo.co.uk
Parameters; Description; Default value
M; Number of diodes multiplying factor; 1
L; Length pf diode for calculating Fowler-Nordheim current (m); 50e-6
W; Width of diode for calculating Fowler-Nordheim current (m); 50e-6
Ef; Forward critical electric field (V/m); 1e10
Er; Reverse critical electric field (V/m); 1e10
Jf; Forward Fowler Nordheim current coefficient; 1e-10
Jr; Reverse Fowler Nordheim current coefficient; 1e-10
Scale; Scale factor for circuit parameters; 1
Scalem; Scale factor for model parameters; 1
Shrink; Shrink factor; 1
Xl; Masking and etching effect for length; 1
Xw; Masking and etching effect for width; 1
Rd; Series parasitic resistance (Ohm); 0.1
Ld; Series parasitic inductance (H); 1e-10
Tox; Thickness of oxide layor (m); 1.0e-8
Test example: (1) TestFNXSPICEDC.sch
References
[1] R. H. Fowler and L. W. Nordheim, Electron emission in Intense Electric Fields,Proc. R. Soc. London,
Vol. 119, No. 781, 1 May 1928, 173-181..
[2] Gong-Ru Lin, Chun-Jung Lin, and Chi-Kuan Lin, Enhanced Fowler-Nordheim tunneling
effect in nanocrystallite Si based LED with interfacial Si nano-pyramids, Optics Express
Vol. 15, Issue 5, pp. 2555-2563, 2007, https://doi.org/10.1364/OE.15.002555.
[3] R G. Forbes, Simple good approximations for the special elliptic functions in standard
Fowler-Nordheim tunneling theory for a Schottky-Nordheim barrier, Applied Physics Letters,
89, 113122, 2006.
</Description>
<Spice>
.SUBCKT AnalogueCM_FowlerNDiodeXSPICE gnd nPAnode nPCathode M=1 L=50e-6 W=50e-6 Ef=1e10 Er=1e10 Jf=1e-10 Jr=1e-10 Tox=1.0e-8 Scale=1.0 Scalem=1.0 Shrink=1.0 Xl=1.0 Xw=1.0 Rd=0.1 Ld=1e-10
L1 ni1 nPAnode {Ld}
R1 ni2 ni1 {Rd}
A1 %gd(ni2 nPCathode) FNMOD
.MODEL FNMOD FNXSPICECM(M = {M} L = {L} W = {W} Ef = {Ef} Er = {Er}
+ Jf = {Jf} Jr = {Jr} Tox = {Tox} Scale = {Scale} Scalem = {Scalem} Shrink = {Shrink}
+ Xl = {Xl} Xw = {Xw} )
.ENDS
</Spice>
<SpiceAttach "FNXSPICECM.mod" "FNXSPICECM.ifs">
<Model>
.Def: AnalogueCM_FowlerNDiodeXSPICE _net0 _net1
.DefEnd
</Model>
<Symbol>
<Line 0 0 -40 0 #000080 2 1>
<Ellipse -20 -30 60 60 #aa0000 3 1 #c0c0c0 1 0>
<.PortSym -40 0 1 0>
<.ID -20 44 FN_Diode "1=M=1==" "1=L=50e-6==" "1=W=50e-6==" "1=Ef=1e10==" "1=Er=1e10==" "1=Jf=1e-10==" "1=Jr=1e-10==" "1=Scale=1.0==" "1=Scalem=1.0==" "1=Shrink=1.0==" "1=Xl=1.0==" "1=Xw=1.0==" "1=Rd=0.1==" "1=Ld=1e-10==" "1=Tox=1.0e-8==">
<Line 0 -20 0 40 #000080 2 1>
<Line 0 -20 20 20 #000080 2 1>
<Line 0 20 20 -20 #000080 2 1>
<Line 20 -20 0 40 #000080 2 1>
<Line 20 0 40 0 #000080 2 1>
<.PortSym 60 0 2 180>
</Symbol>
</Component>
/*-------------------------------------------------------------------------------------------------------------------------------------------------------*/
<Component RFind>
<Description>
Simple RF inductor model.
1 January 2017 Mike Brinson mbrin72043@yahoo.co.uk
1. XSPICE I-V CodeModel: DC, transient and AC functionality,
2. L, il1 and il2 determine inductance value as a function of DC current,
3. L, tc1 and tc2 determine inductance value as a function of device temperature "temp".
4. Inductance RF performance is set by parasitic components rs, cp and rp.
NOTE: The Qucs-S XSPICE RF inductance CodeModel only uses two circuit nodes, yielding
a highly efficient compact model.
Parameters:
NAME; DESCRIPTION; DEFAULT VALUE; UNIT
L; Inductance at tmperature tnom; 370u; H
il1; Linear current coefficient; 0; 1/A
il2; Quadratic current coefficient; -6.19e-5; 1/(A*A)
tc1; Linear temperature coefficient; 0.0; 1/C
tc2; Quadratic temperature coefficient; 0.0; 1/(C*C)
lic; Initial condition: dc current; 0.0; A
tnom; Inductance measurement temperature; 26.58; C
rs; Inductance winding resistance; 0.315; Ohms
cp; Self-resonant capacitance; 6.02e-12; F
rp; Limits self-resonant impedance; 363k; Ohms
References:
1. L. Green, RF-inductor modeling for the 21st century, EDN, 27, pp. 67-70,72,74, 2001.
2. O'Hara, Modeling non-ideal inductors in SPICE, UK:Newo]port Components Limited,
Milton Keynes, http://www.intusoft.com/articles/inductor.pdf, 1993.
3. M.E. Brinson and S. Jahn, Modelling of high-frequency inductance with Qucs non-linear radio
frequency equation defined devices, International Journal of Electronics, V.93, pp. 307-321, 2009,
http://dx.doi.org/10.1080/00207210802640603.
</Description>
<Model>
.Def:AnalogueCM_RFind _net0 _net1
.Def:End
</Model>
<Spice>* Qucs 0.0.19 XSPICEind_RFind.sch
.SUBCKT AnalogueCM_RFind gnd _net0 _net1 l=370u il1=0.0 il2=-6.19e-5 tc1=0.0 tc2=0.0 lic=0.0 tnom=26.85 rs=0.315 cp=10e-12 rp=363k
A1 %gd(_net0 _net1) lmod
.MODEL lmod RFind(L={l} lic={lic}
+ il1={il1} il2={il2} tc1={tc1} tc2={tc2}
+ tnom = {tnom} rs={rs} cp={cp} rp={rp})
.ENDS
</Spice>
<SpiceAttach "RFind.mod" "RFind.ifs">
<Symbol>
<Line -45 0 5 0 #000080 2 1>
<Line -40 -10 0 10 #aa0000 3 1>
<Line -30 -10 0 10 #aa0000 3 1>
<Line -20 -10 0 10 #aa0000 3 1>
<Line -10 -10 0 10 #aa0000 3 1>
<Line 0 -10 0 10 #aa0000 3 1>
<Line -40 -10 10 0 #aa0000 3 1>
<Line -30 0 10 0 #aa0000 3 1>
<Line -10 0 10 0 #aa0000 3 1>
<Line 0 -10 10 0 #aa0000 3 1>
<Line -20 -10 10 0 #aa0000 3 1>
<Line 10 -10 0 10 #aa0000 3 1>
<Line 10 0 20 0 #000000 2 1>
<Rectangle 30 -5 40 10 #aa0000 3 1 #c0c0c0 1 0>
<Line 75 -25 0 25 #00007f 2 1>
<Line 75 -50 0 25 #00007f 2 1>
<Line -45 -25 0 25 #00007f 2 1>
<Line -45 -25 0 -25 #00007f 2 1>
<Line 75 0 -5 0 #00007f 2 1>
<Rectangle -5 -55 35 10 #aa0000 3 1 #c0c0c0 1 0>
<Line -5 -50 -40 0 #00007f 2 1>
<Line 30 -50 45 0 #00007f 2 1>
<Line 10 -30 -55 0 #00007f 2 1>
<Line 10 -35 0 10 #aa0000 3 1>
<Line 15 -35 0 10 #aa0000 3 1>
<Line 15 -30 60 0 #00007f 2 1>
<Line -60 -30 15 0 #00007f 2 1>
<.PortSym -60 -30 1 0>
<Line 90 -30 -15 0 #00007f 2 1>
<.PortSym 90 -30 2 180>
<Text 34 -49 10 #aa0000 0 "Rp">
<Text -19 -27 10 #aa0000 0 "L">
<Text 17 -29 10 #aa0000 0 "Cp">
<Text 38 -21 10 #aa0000 0 "Rs">
<Rectangle -50 -60 130 70 #aa0000 3 3 #c0c0c0 1 0>
<.ID -25 19 RF_Ind "1=l=370u==" "1=il1=0.0==" "1=il2=-6.19e-5==" "1=tc1=0.0==" "1=tc2=0.0==" "1=lic=0.0==" "1=tnom=26.85==" "1=rs=0.315==" "1=cp=6.02e-12==" "1=rp=363k==">
</Symbol>
</Component>