429 Commits

Author SHA1 Message Date
DRC
602f0592a9 AltiVec: Disable/Fix some strict compiler warnings
We use a standard set of strict compiler warnings with Clang and GCC to
continuously test and maintain C89 conformance in the libjpeg API code.
However, SIMD extensions need not comply with that.  The AltiVec code
specifically uses some C99isms, so disable -Wc99-extensions and
-Wpedantic in the scope of that code.  Also disable -Wshadow, because
I'm too lazy to fix the TRANSPOSE() macro.  Also
use #ifdef __BIG_ENDIAN__ and #if defined(__BIG_ENDIAN__) instead
of #if __BIG_ENDIAN__
2024-12-11 19:31:24 -05:00
DRC
ea4ee22932 Neon: Disable some strict compiler warnings
We use a standard set of strict compiler warnings with Clang and GCC to
continuously test and maintain C89 conformance in the libjpeg API code.
However, SIMD extensions need not comply with that.  The Neon code
specifically uses some C99isms, so disable
-Wdeclaration-after-statement, -Wc99-extensions, and -Wpedantic in the
scope of that code.  Also modify the Neon feature tests so that they
will succeed if any of the aforementioned compiler warnings are enabled.
2024-12-11 16:57:46 -05:00
DRC
645673810f Merge branch 'main' into dev 2024-08-31 17:41:03 -04:00
DRC
eb75363004 Update URLs
- Eliminate unnecessary "www."
- Use HTTPS.
- Update Java, MSYS, tdm-gcc, and NSIS URLs.
- Update URL and title of Agner Fog's assembly language optimization
  manual.
- Remove extraneous information about MASM and Borland Turbo Assembler
  and outdated NASM URLs from the x86 assembly headers, and mention
  Yasm.
2024-08-31 16:50:08 -04:00
DRC
a27d9629bb Merge branch 'main' into dev 2024-07-04 10:05:50 -04:00
DRC
e287a35762 Build: Put gastest.o in ${CMAKE_BINARY_DIR}/simd
Closes #776
2024-07-04 10:03:50 -04:00
DRC
7e45654c1b Merge branch 'main' into dev 2024-03-04 18:10:16 -05:00
DRC
3202feb08a x86-64 SIMD: Support CET if C compiler enables it
- Detect at configure time, via the __CET__ C preprocessor macro,
  whether the C compiler will include either indirect branch tracking
  (IBT) or shadow stack support, and define a NASM macro (__CET__) if
  so.

- Modify the x86-64 SIMD code so that it includes appropriate endbr64
  instructions (to support IBT) and an appropriate .note.gnu.property
  section (to support both IBT and shadow stack) when __CET__ is
  defined.

Closes #350
2024-02-29 16:37:30 -05:00
DRC
1335547558 x86 SIMD: Capitalize all instruction-like macros
(to improve code readability)
2024-02-29 12:18:49 -05:00
DRC
e69dd40c07 Reorganize source to make things easier to find
- Move all libjpeg documentation, except for README.ijg, into the doc/
  subdirectory.

- Move the TurboJPEG C API documentation from doc/html/ into
  doc/turbojpeg/.

- Move all C source code and headers into a src/ subdirectory.

- Move turbojpeg-jni.c into the java/ subdirectory.

Referring to #226, there is no ideal solution to this problem.  A
semantically ideal solution would have involved placing all source code,
including the SIMD and Java source code, under src/ (or perhaps placing
C library source code under lib/ and C test program source code under
test/), all header files under include/, and all documentation under
doc/.  However:

- To me it makes more sense to have separate top-level directories for
  each language, since the SIMD extensions and the Java API are
  technically optional features.  src/ now contains only the code that
  is relevant to the core C API libraries and associated programs.
- I didn't want to bury the java/ and simd/ directories or add a level
  of depth to them, since both directories already contain source code
  that is 3-4 levels deep.
- I would prefer not to separate the header files from the C source
  code, because:
  1. It would be disruptive.  libjpeg and libjpeg-turbo have
     historically placed C source code and headers in the same
     directory, and people who are familiar with both projects (self
     included) are used to looking for the headers in the same directory
     as the C source code.
  2. In terms of how the headers are used internally in libjpeg-turbo,
     the distinction between public and private headers is a bit fuzzy.
- It didn't make sense to separate the test source code from the library
  source code, since there is not a clear distinction in some cases.
  (For instance, the IJG image I/O functions are used by cjpeg and djpeg
  as well as by the TurboJPEG API.)

This solution is minimally disruptive, since it keeps all C source code
and headers together and keeps java/ and simd/ as top-level directories.
It is a bit awkward, because java/ and simd/ technically contain source
code, even though they are not under src/.  However, other solutions
would have been more awkward for different reasons.

Closes #226
2024-01-23 17:50:35 -05:00
DRC
fa2b6ea092 Eliminate duplicate copies of jpeg_nbits_table
ef9a4e05ba919494cbebe50e15f332de5ab97e82 (libjpeg-turbo 1.4.x), which
was based on
https://bug815473.bmoattachments.org/attachment.cgi?id=692126
(https://bugzilla.mozilla.org/show_bug.cgi?id=815473), modified the C
baseline Huffman encoder so that it precomputes jpeg_nbits_table, in
order to facilitate sharing the table among multiple processes.
However, libjpeg-turbo never shared the table, and because the table was
implemented as a static array, f3a8684cd1c28e557d394470962a7a224c76ddbc
(libjpeg-turbo 1.5.x) and 37bae1a0e977ee1ba769e6f0aa27e519ab6e58c6
(libjpeg-turbo 2.0.x) each introduced a duplicate copy of the table for
(respectively) the SSE2 baseline Huffman encoder and the C progressive
Huffman encoder.

This commit does the following:
- Move the duplicated code in jchuff.c and jcphuff.c, originally
  introduced in 0cfc4c17b740cb2cbb11f9d85c8ab3745d5b913a and
  37bae1a0e977ee1ba769e6f0aa27e519ab6e58c6, into a header
  (jpeg_nbits.h).
- Credit the co-author of 0cfc4c17b740cb2cbb11f9d85c8ab3745d5b913a.
  (Refer to https://sourceforge.net/p/libjpeg-turbo/patches/57).
- Modify the SSE2 baseline Huffman encoder so that the C Huffman
  encoders can share its definition of jpeg_nbits_table.
- Move the definition of jpeg_nbits_table into a C source file
  (jpeg_nbits.c) rather than a header, and define the table only if
  USE_CLZ_INTRINSIC is undefined and the SSE2 baseline Huffman encoder
  will not be built.
- Apply hidden symbol visibility to the shared definition of
  jpeg_nbits_table, if the compiler supports the necessary attribute.
  (In practice, only Visual C++ doesn't.)

Closes #114

See also:
https://bugzilla.mozilla.org/show_bug.cgi?id=1501523
2024-01-16 17:33:30 -05:00
DRC
7b844bfda6 x86-64 SIMD: Use std stack frame/prologue/epilogue
This allows debuggers and profilers to reliably capture backtraces from
within the x86-64 SIMD functions.

In places where rbp was previously used to access temporary variables
(after stack alignment), we now use r15 and save/restore it accordingly.
The total amount of work is approximately the same, because the previous
code pushed the pre-alignment stack pointer to the aligned stack.  The
new prologue and epilogue actually have fewer instructions.

Also note that the {un}collect_args macros now use rbp instead of rax to
access arguments passed on the stack, so we save a few instructions
there as well.

Based on:
debcc7c3b4

Closes #707
Closes #708
2023-08-08 12:33:06 -04:00
DRC
4e028ecd63 SIMD/x86: Initialize simd_support before every use
As long as a libjpeg instance is only used by one thread at a time, a
program is technically within its rights to call jpeg_start_*compress()
in one thread and jpeg_(read|write)_*(), with the same libjpeg instance,
in a second thread.  However, because the various jsimd_can*() functions
are called within the body of jpeg_start_*compress() and simd_support is
now thread-local (due to f579cc11b33e5bfeb9931e37cc74b4a33c95d2e6), that
led to a situation in which simd_support was initialized in the first
thread but not the second.  The uninitialized value of simd_support is
0xFFFFFFFF, which the second thread interpreted to mean that it could
use any instruction set, and when it attempted to use AVX2 instructions
on a CPU that didn't support them, an illegal instruction error
occurred.

This issue was known to affect libvips.

This commit modifies the i386 and x86-64 SIMD dispatchers so that the
various jsimd_*() functions always call init_simd(), if simd_support is
uninitialized, prior to dispatching based on the value of simd_support.
Note that the other SIMD dispatchers don't need this, because only the
x86 SIMD extensions currently support multiple instruction sets.

This patch has been verified to be performance-neutral to within
+/- 0.4% with 32-bit and 64-bit code running on a 2.8 GHz Intel Xeon
W3530 and a 3.6 GHz Intel Xeon W2123.

Fixes #649
2023-02-02 10:23:41 -06:00
DRC
78a36f6dc3 Fix buffer overrun in 12-bit prog Huffman encoder
Regression introduced by 16bd984557fa2c490be0b9665e2ea0d4274528a8 and
5b177b3cab5cfb661256c1e74df160158ec6c34e

The pre-computed absolute values used in encode_mcu_AC_first() and
encode_mcu_AC_refine() were stored in a JCOEF (signed short) array.
When attempting to losslessly transform a specially-crafted malformed
12-bit JPEG image with a coefficient value of -32768 into a progressive
12-bit JPEG image, the progressive Huffman encoder attempted to store
the absolute value of -32768 in the JCOEF array, thus overflowing the
16-bit signed data type.  Therefore, at this point in the code:
8c5e78ce29/jcphuff.c (L889)
the absolute value was read as -32768, which caused the test at
8c5e78ce29/jcphuff.c (L896)
to fail, falling through to
8c5e78ce29/jcphuff.c (L908)
with an overly large value of r (46) that, when shifted left four
places, incremented, and passed to emit_symbol(), exceeded the maximum
index (255) for the derived code tables.  Fortunately, the buffer
overrun was fully contained within phuff_entropy_encoder, so the issue
did not generate a segfault or other user-visible errant behavior, but
it did cause a UBSan failure that was detected by OSS-Fuzz.

This commit introduces an unsigned JCOEF (UJCOEF) data type and uses it
to store the absolute values of DCT coefficients computed by the
AC_first_prepare() and AC_refine_prepare() methods.

Note that the changes to the Arm Neon progressive Huffman encoder
extensions cause signed 16-bit instructions to be replaced with
equivalent unsigned 16-bit instructions, so the changes should be
performance-neutral.

Based on:
bbf61c0382

Closes #628
2022-11-15 19:07:50 -06:00
DRC
eb0a024af2 Remove redundant jconfigint.h #includes
Because of 607b668ff96e40fdc749de9b1bb98e7f40c86d93, jconfigint.h is
included by jinclude.h.
2022-10-04 12:51:52 -05:00
DRC
f579cc11b3 Make SIMD capability variables thread-local ...
... on platforms that support TLS, which should include all
currently-supported platforms
(https://libjpeg-turbo.org/Documentation/OfficialBinaries)

Addresses a concern raised in #87

Although it is still my opinion that the data race in init_simd() was
innocuous, we can now fix it for free thanks to
ae87a958613b69628b92088b313ded0d4f59a716, so why not?
2022-10-03 21:36:21 -05:00
Donovan Watteau
59337a67b1 PowerPC: Detect AltiVec support on OS X
libjpeg-turbo's AltiVec SIMD extensions previously assumed that AltiVec
instructions were available on all Power Macs that supported OS X 10.4
"Tiger" (the earliest version of OS X that libjpeg-turbo has ever
supported), but Tiger can actually run on PowerPC G3 processors, which
lack AltiVec instructions.  This commit enables run-time detection of
AltiVec instructions on OS X/PowerPC systems if AltiVec instructions are
not force-enabled at compile time (using -maltivec).  This allows the
same build of libjpeg-turbo to support G3, G4, and G5 Power Macs.

Closes #609
2022-07-07 13:01:11 -05:00
Jiaxun Yang
fac8381441 Build: Don't enable Loongson MMI with MIPS R6+
MIPS R6 removed some instructions, so Loongson MMI cannot be built with
MIPS R6+ toolchains.

Closes #598
2022-05-24 09:25:55 -05:00
DRC
9abeff46d8 Remove extraneous #include directives
jinclude.h already includes stdio.h, stdlib.h, and string.h.
2022-03-09 11:49:27 -06:00
Jonathan Wright
c5f269eb96 Neon/AArch64: Explicitly unroll quant loop w/Clang
The loop in jsimd_quantize_neon() is only executed twice and should be
unrolled for AArch64 targets.  GCC does that by default, but Clang 11
and later versions available at the time of this writing do not.  This
patch adds an unroll pragma when targetting AArch64 with Clang.  We do
not use the unroll pragma for AArch32 targets, because it causes the
Clang-generated assembly code to exhaust the available Neon registers
(32 x 64-bit) and spill to the stack.  (DRC: Referring to the discussion
in #570, this is likely due to compiler confusion that results in poor
register allocation.  It is possible to eliminate the spillage and
reduce the instruction count by loading the data on a just-in-time
basis, thus explicitly interleaving compute and I/O, but the performance
implications of that are currently unknown.)

The effects of unrolling the quantization loop are:
1) elimination of the loop control flow overhead and
2) enabling the use of LDP/STP instructions that work from a single
   base pointer, instead of using double the number of LDR/STR
   instructions, each requiring an address calculation.

Closes #570
2022-02-25 12:53:05 -06:00
DRC
98bc3eeb3a Neon/AArch64: Fix/suppress UBSan warnings
- Suppress a UBSan warning regarding storing a 64-bit value to a
  non-64-bit-aligned address.  That behavior is technically undefined
  per the C spec but is supported in the context of the AArch64
  architecture and compilers.

- Explicitly promote block_diff[i] to unsigned int prior to left
  shifting it, in order to avoid a UBSan warning.  This warning also
  described behavior that is technically undefined per the C spec but is
  supported in the context of the AArch64 architecture and compilers.
  Changing the type cast order eliminated the warning without changing
  the generated assembly code.

Closes #582
2022-02-25 00:02:14 -06:00
Jonathan Wright
147548c055 Neon/AArch64: Accelerate Huffman encoding
- Make better use of 128-bit vector registers, thus reducing the number
  of Neon instructions required to construct the AC coefficient bitmap.

- Refactor the Neon computations of 'nbits' and 'diff' to use shorter
  and higher-throughput instruction sequences.

DRC's notes:

This commit partially integrates #570.  Arm reported a 1-4% speedup on
Cortex-A55 and Neoverse-N1 cores when using recent compilers but little
or no speedup with Clang 10.  I observed no speedup with Clang 10 on my
Cortex-A53 and Cortex-A72 cores.  Thus, referring to #582, the primary
purpose of this commit is to fix UBSan warnings regarding the shift
operations previously located at Line 253:

d640a45730/simd/arm/aarch64/jchuff-neon.c (L253)
2022-02-24 23:31:32 -06:00
DRC
607b668ff9 MSVC: Eliminate C4996 warnings in API libs
The primary purpose of this is to encourage adoption of libjpeg-turbo in
downstream Windows projects that forbid the use of "deprecated"
functions.  libjpeg-turbo's usage of those functions was not actually
unsafe, because:

- libjpeg-turbo always checks the return value of fopen() and ensures
  that a NULL filename can never be passed to it.

- libjpeg-turbo always checks the return value of getenv() and never
  passes a NULL argument to it.

- The sprintf() calls in format_message() (jerror.c) could never
  overflow the destination string buffer or leave it unterminated as
  long as the buffer was at least JMSG_LENGTH_MAX bytes in length, as
  instructed. (Regardless, this commit replaces those calls with
  snprintf() calls.)

- libjpeg-turbo never uses sscanf() to read strings or multi-byte
  character arrays.

- Because of b7d6e84d6a9283dc2bc50ef9fcaadc0cdeb25c9f, wrjpgcom
  explicitly checks the bounds of the source and destination strings
  before calling strcat() and strcpy().

- libjpeg-turbo always ensures that the destination string is
  terminated when using strncpy().
  (548490fe5e2aa31cb00f6602d5a478b068b99682 made this explicit.)

Regarding thread safety:

Technically speaking, getenv() is not thread-safe, because the returned
pointer may be invalidated if another thread sets the same environment
variable between the time that the first thread calls getenv() and the
time that that thread uses the return value.  In practice, however, this
could only occur with libjpeg-turbo if:

(1) A multithreaded calling application used the deprecated and
undocumented TJFLAG_FORCEMMX/TJFLAG_FORCESSE/TJFLAG_FORCESSE2 flags in
the TurboJPEG API or set one of the corresponding environment variables
(which are only intended for testing purposes.)  Since the TurboJPEG API
library only ever passed string constants to putenv(), the only inherent
risk (i.e. the only risk introduced by the library and not the calling
application) was that the SIMD extensions may have read an incorrect
value from one of the aforementioned environment variables.

or

(2) A multithreaded calling application modified the value of the
JPEGMEM environment variable in one thread while another thread was
reading the value of that environment variable (in the body of
jpeg_create_compress() or jpeg_create_decompress().)  Given that the
libjpeg API provides a thread-safe way for applications to modify the
default memory limit without using the JPEGMEM environment variable,
direct modification of that environment variable by calling applications
is not supported.

Microsoft's implementation of getenv_s() does not claim to be
thread-safe either, so this commit uses getenv_s() solely to mollify
Visual Studio.  New inline functions and macros (GETENV_S() and
PUTENV_S) wrap getenv_s()/_putenv_s() when building for Visual Studio
and getenv()/setenv() otherwise, but GETENV_S()/PUTENV_S() provide no
advantages over getenv()/setenv() other than parameter validation.  They
are implemented solely for convenience.

Technically speaking, strerror() is not thread-safe, because the
returned pointer may be invalidated if another thread changes the locale
and/or calls strerror() between the time that the first thread calls
strerror() and the time that that thread uses the return value.  In
practice, however, this could only occur with libjpeg-turbo if a
multithreaded calling application encountered a file I/O error in
tjLoadImage() or tjSaveImage().  Since both of those functions
immediately copy the string returned from strerror() into a thread-local
buffer, the risk is minimal, and the worst case would involve an
incorrect error string being reported to the calling application.
Regardless, this commit uses strerror_s() in the TurboJPEG API library
when building for Visual Studio.  Note that strerror_r() could have been
used on Un*x systems, but it would have been necessary to handle both
the POSIX and GNU implementations of that function and perform
widespread compatibility testing.  Such is left as an exercise for
another day.

Fixes #568
2022-02-23 15:57:01 -06:00
DRC
6d2d6d3baf "YASM" = "Yasm"
The assembler name was initially spelled "YASM", but it has been "Yasm"
for the entirety of libjpeg-turbo's existence.
2022-02-11 09:34:01 -06:00
DRC
e1588a2a7b Build: Fix Neon capability detection w/ MSVC
(broken by 57ba02a408a9a55ccff25aae8b164632a3a4f177)

Refer to #547
2022-02-10 22:24:19 -06:00
DRC
a01857cff6 Build: Disallow NEON_INTRINSICS=0 if GAS is broken
If NEON_INTRINSICS=0, then run the GAS sanity check from libjpeg-turbo
2.0.x and force-enable NEON_INTRINSICS if the test fails.  This fixes
the AArch32 build when using Clang 6.0 on Linux or the Clang toolchain
in the Android NDK r15*-r16*.  It also prevents users from manually
disabling NEON_INTRINSICS if doing so would break the build (such as
with Xcode 5.)
2021-12-01 19:10:14 -06:00
DRC
57ba02a408 Build: Improve Neon capability detection
- Use check_c_source_compiles() rather than check_symbol_exists() to
  detect the presence of vld1_s16_x3(), vld1_u16_x2(), and
  vld1q_u8_x4().  check_symbol_exists() is unreliable for detecting
  intrinsics, and in practice, it did not detect the presence of the
  aforementioned intrinsics in versions of GCC that support them.

- Set DEFAULT_NEON_INTRINSICS=0 for GCC < 12, even if the aforementioned
  intrinsics are available.  The AArch64 back end in GCC 10 and 11
  supports the necessary intrinsics, but the GAS implementation is still
  faster when using those compilers.

Fixes #547
2021-12-01 11:26:57 -06:00
Piotr Kubaj
d401d62514 PowerPC: Detect AltiVec support on FreeBSD
Recent FreeBSD/PowerPC compilers, such as Clang 11.0.x on FreeBSD 13, do
the equivalent of passing -maltivec to the compiler by default, so
run-time AltiVec detection is unnecessary.  However, it becomes
necessary when using other compilers or when passing -mno-altivec to the
compiler.

Closes #552
2021-10-30 16:53:51 -05:00
DRC
a9c41fbc4f Build: Don't enable Neon SIMD exts with Armv6-
When building for 32-bit Arm platforms, test whether basic Neon
intrinsics will compile with the specified compiler and C flags.  This
prevents the build system from enabling the Neon SIMD extensions when
targetting Armv6 and other legacy architectures that do not support Neon
instructions.

Regression introduced by bbd8089297862efb6c39a22b5623f04567ff6443.
(Checking whether gas-preprocessor.pl was needed for 32-bit Arm builds
had the effect of checking whether Neon instructions were supported.)

Fixes #553
2021-10-03 13:10:35 -05:00
DRC
129f0cb763 Neon/AArch64: Don't put GAS functions in .rodata
Regression introduced by 240ba417aa4b3174850d05ea0d22dbe5f80553c1

Closes #546
2021-08-25 12:54:24 -05:00
DRC
2849d86aaa SSE2/64-bit: Fix trans. segfault w/ malformed JPEG
Attempting to losslessly transform certain malformed JPEG images can
cause the nbits table index in the Huffman encoder to exceed 32768, so
we need to pad the SSE2 implementation of that table to 65536 entries as
we do with the C implementation.

Regression introduced by 087c29e07f7533ec82fd7eb1dafc84c29e7870ec

Fixes #543
2021-08-06 14:04:34 -05:00
Peter Kasting
b201838d8b Neon: Silence -Wimplicit-fallthrough warnings
Refer to https://bugs.chromium.org/p/chromium/issues/detail?id=995993

Closes #534
2021-07-13 10:21:38 -05:00
DRC
a1bfc05854 Neon/AArch32: Mark inline asm output as read/write
'buffer' is both passed into the inline assembly code and modified by
it.  See https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html, 6.47.2.3.

With GCC 4, this commit does not change the generated assembly code at
all.

With GCC 8, this commit fixes an assembly error:

  /tmp/{foo}.s: Assembler messages:
  /tmp/{foo}.s:775: Error: registers may not be the same --
                    `str r9,[r9],#4'

I'm not sure why that error went unnoticed, since I definitely
benchmarked the previous commit with GCC 8.  Anyhow, this commit changes
the generated assembly code slightly but does not alter performance.

With Clang 10, this commit changes the generated assembly code slightly
but does not alter performance.

Refer to #529
2021-07-12 15:22:24 -05:00
DRC
2a2970af67 Neon/AArch32: Work around Clang T32 miscompilation
Referring to the C standard
(http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf,
J.2 Undefined behavior), the behavior of the compiler is undefined if
"conversion between two pointer types produces a result that is
incorrectly aligned."  Thus, the behavior of this code

  *((uint32_t *)buffer) = BUILTIN_BSWAP32(put_buffer);

in the AArch32 version of the FLUSH() macro is undefined unless 'buffer'
is 32-bit-aligned.  Referring to
https://bugs.llvm.org/show_bug.cgi?id=50785, certain versions of Clang,
when generating Thumb (T32) instructions, miscompile that code into an
assembly instruction (stm) that requires the destination to be
32-bit-aligned.  Since such alignment cannot be guaranteed within the
Huffman encoder, this reportedly led to crashes (SIGBUS: illegal
alignment) with AArch32/Thumb builds of libjpeg-turbo running on Android
devices, although thus far I have been unable to reproduce those crashes
with a plain Linux/Arm system.

The miscompilation is visible with the Compiler Explorer:
https://godbolt.org/z/rv1ccx1Pb
However, it goes away when removing the return statement from the
function.  Thus, it seems that Clang's behavior in this regard is
somewhat variable, which may explain why the crashes are only
reproducible on certain platforms.

The suggested workaround is to use memcpy(), but whereas Clang and
recent GCC releases are smart enough to compile a 4-byte memcpy() call
into a str instruction, GCC < 6 is not.  Referring to
https://godbolt.org/z/ae7Wje3P6, the only way to consistently produce
the desired str instruction across all supported compilers is to use
inline assembly.  Visual C++ presumably does not miscompile the code in
question, since no issues have been reported with it, but since the code
relies on undefined compiler behavior, prudence dictates that
e4ec23d7ae051c1c73947f889818900362fdc52d should be reverted for Visual
C++, which this commit does.  The performance impact of
e4ec23d7ae051c1c73947f889818900362fdc52d for Visual C++/Arm builds is
unknown (I have no ability to test such builds), but regardless, this
commit reverts the Visual C++/Arm performance to that of libjpeg-turbo
2.1 beta1.

Closes #529
2021-07-09 19:37:58 -05:00
DRC
0081c2de20 Neon/AArch32: Fix build if 'soft' float ABI used
Arm compilers have three floating point ABI options:

'soft' compiles floating point operations as function calls into a
software floating point library, which emulates floating point
operations using integer operations.  Floating point function arguments
are passed using integer registers.

'softfp' also compiles floating point operations as function calls into
a floating point library and passes floating point function arguments
using integer registers, but the floating point library functions can
use FPU instructions if the CPU supports them.

'hard' compiles floating point operations into inline FPU instructions,
similarly to x86 and other architectures, and passes floating point
function arguments using FPU registers.

Not all AArch32 CPUs have FPUs or support Neon instructions, so on Linux
and Android platforms, the AArch32 SIMD dispatcher in libjpeg-turbo only
enables the Neon SIMD extensions at run time if /proc/cpuinfo indicates
that the CPU supports Neon instructions or if Neon instructions are
explicitly enabled (e.g. by passing -mfpu=neon to the compiler.)  In
order to support all AArch32 CPUs using the same code base, i.e. to
support run-time FPU and Neon auto-detection, it is necessary to compile
the scalar C source code using -mfloat-abi=soft.  However, the 'soft'
floating point ABI cannot be used when compiling Neon intrinsics, so the
intrinsics implementation of the Neon SIMD extensions must be compiled
using -mfloat-abi=softfp if the scalar C source code is compiled using
-mfloat-abi=soft.

This commit modifies the build system so that it detects whether
-mfloat-abi=softfp must be explicitly added to the compiler flags when
building the intrinsics implementation of the Neon SIMD extensions.
This will be necessary if the build is using the 'soft' floating
point ABI along with run-time auto-detection of Neon instructions.

Fixes #523
2021-07-07 14:10:05 -05:00
Jonathan Wright
e4ec23d7ae Neon: Use byte-swap builtins instead of inline asm
Define compiler-independent byte-swap macros and use them instead of
executing 'rev' via inline assembly code with GCC-compatible compilers
or a slow shift-store sequence with Visual C++.

* This produces identical assembly code with:

  - 64-bit GCC 8.4.0 (Linux)
  - 64-bit GCC 9.3.0 (Linux)
  - 64-bit Clang 10.0.0 (Linux)
  - 64-bit Clang 10.0.0 (MinGW)
  - 64-bit Clang 12.0.0 (Xcode 12.2, macOS)
  - 64-bit Clang 12.0.0 (Xcode 12.2, iOS)

* This produces different assembly code with:

  - 64-bit GCC 4.9.1 (Linux)
  - 32-bit GCC 4.8.2 (Linux)
  - 32-bit GCC 8.4.0 (Linux)
  - 32-bit GCC 9.3.0 (Linux)
    Since the intrinsics implementation of Huffman encoding is not used
    by default with these compilers, this is not a concern.

  - 32-bit Clang 10.0.0 (Linux)
    Verified performance neutrality

Closes #507
2021-03-26 14:09:10 -05:00
DRC
e795afc330 SSE2: Fix prog Huff enc err if Sl%32==0 && Al!=0
(regression introduced by 16bd984557fa2c490be0b9665e2ea0d4274528a8)

This implements the same fix for
jsimd_encode_mcu_AC_refine_prepare_sse2() that
a81a8c137b3f1c65082aa61f236aa88af61b3ad4 implemented for
jsimd_encode_mcu_AC_first_prepare_sse2().

Based on:
1a59587397
eb176a91d8

Fixes #509
Closes #510
2021-03-25 22:46:14 -05:00
Adrian Bunk
2c01200c5d
Build: Fix incorrect regexes w/ if(...MATCHES...)
"arm*" as a regex means 'ar' followed by zero or more 'm' characters,
which matches 'parisc' and 'sparc64' as well.
2021-03-15 12:56:53 -05:00
Richard Townsend
74e6ea45e3 Neon: Fix Huffman enc. error w/Visual Studio+Clang
The GNU builtin function __builtin_clzl() accepts an unsigned long
argument, which is 8 bytes wide on LP64 systems (most Un*x systems,
including Mac) but 4 bytes wide on LLP64 systems (Windows.)  This caused
the Neon intrinsics implementation of Huffman encoding to produce
mathematically incorrect results when compiled using Visual Studio with
Clang.

This commit changes all invocations of __builtin_clzl() in the Neon SIMD
extensions to __builtin_clzll(), which accepts an unsigned long long
argument that is guaranteed to be 8 bytes wide on all systems.

Fixes #480
Closes #490
2021-01-11 22:29:11 -06:00
Jonathan Wright
eb14189caa Fix Neon SIMD build issues with Visual Studio
- Use the _M_ARM and _M_ARM64 macros provided by Visual Studio for
  compile-time detection of Arm builds, since __arm__ and __aarch64__
  are only present in GNU-compatible compilers.
- Neon/intrinsics: Use the _CountLeadingZeros() and
  _CountLeadingZeros64() intrinsics provided by Visual Studio, since
  __builtin_clz() and __builtin_clzl() are only present in
  GNU-compatible compilers.
- Neon/intrinsics: Since Visual Studio does not support static vector
  initialization, replace static initialization of Neon vectors with the
  appropriate intrinsics.  Compared to the static initialization
  approach, this produces identical assembly code with both GCC and
  Clang.
- Neon/intrinsics: Since Visual Studio does not support inline assembly
  code, provide alternative code paths for Visual Studio whenever inline
  assembly is used.
- Build: Set FLOATTEST appropriately for AArch64 Visual Studio builds
  (Visual Studio does not emit fused multiply-add [FMA] instructions by
  default for such builds.)
- Neon/intrinsics: Move temporary buffer allocation outside of nested
  loops.  Since Visual Studio configures Arm builds with a relatively
  small amount of stack memory, attempting to allocate those buffers
  within the inner loops caused a stack overflow.

Closes #461
Closes #475
2020-11-24 21:13:16 -06:00
DRC
33859880e9 Neon: Auto-detect compiler intrinsics completeness
This allows the Neon intrinsics code to be built successfully (albeit
likely with reduced run-time performance) with Xcode 5.0-6.2
(iOS/AArch64) and Android NDK < r19 (AArch32).  Note that Xcode 5.0-6.2
will not build the Armv8 GAS code without gas-preprocessor.pl, and no
version of Xcode will build the Armv7 GAS code without
gas-preprocessor.pl, so we always use the full Neon intrinsics
implementation by default with macOS and iOS builds.

Auto-detecting the completeness of the compiler's set of Neon intrinsics
also allows us to more intelligently set the default value of
NEON_INTRINSICS, based on the values of HAVE_VLD1*.  This is a
reasonable, albeit imperfect, proxy for whether a compiler has a full
and optimal set of Neon intrinsics.  Specific notes:

  - 64-bit RGB-to-YCbCr color conversion
    does not use any of the intrinsics in question, regresses with GCC
  - 64-bit accurate integer forward DCT
    uses vld1_s16_x3(), regresses with GCC
  - 64-bit Huffman encoding
    uses vld1q_u8_x4(), regresses with GCC
  - 64-bit YCbCr-to-RGB color conversion
    does not use any of the intrinsics in question, regresses with GCC
  - 64-bit accurate integer inverse DCT
    uses vld1_s16_x3(), regresses with GCC
  - 64-bit 4x4 inverse DCT
    uses vld1_s16_x3().  I did not test this algorithm in isolation, so
    it may in fact regress with GCC, but the regression may be hidden by
    the speedup from the new SIMD-accelerated upsampling algorithms.

  - 32-bit RGB-to-YCbCr color conversion:
    uses vld1_u16_x2(), regresses with GCC
  - 32-bit accurate integer forward DCT
    uses vld1_s16_x3(), regression irrelevant because there was no
    previous implementation
  - 32-bit accurate integer inverse DCT
    uses vld1_s16_x3(), regresses with GCC
  - 32-bit fast integer inverse DCT
    does not use any of the intrinsics in question, regresses with GCC
  - 32-bit 4x4 inverse DCT
    uses vld1_s16_x3().  I did not test this algorithm in isolation, so
    it may in fact regress with GCC, but the regression may be hidden by
    the speedup from the new SIMD-accelerated upsampling algorithms.

Presumably when GCC includes a full and optimal set of Neon intrinsics,
the HAVE_VLD1* tests will pass, and the full Neon intrinsics
implementation will be enabled automatically.
2020-11-13 15:16:34 -06:00
DRC
bbd8089297 Neon: Finalize intrinsics implementation
- Remove gas-preprocessor.pl.  None of the compilers that can build the
  new intrinsics implementation require gas-preprocessor.pl (tested
  with Xcode and with Clang 3.9+ for Linux.)
- Document that Xcode 6.3.x or later is now required for iOS builds
  (older versions of Xcode do not have a full set of Neon intrinsics.)
- Add a change log entry.
- Do not enable the ASM CMake language unless NEON_INTRINSICS is false.
- Add a Clang/Arm64 test to .travis.yml in order to test the new
  intrinsics implementation.

Closes #455
2020-11-10 19:58:28 -06:00
Martyn Jacques
141f26ff6d Neon: Intrinsics impl. of 2x2 and 4x4 scaled IDCTs
The previous AArch32 and AArch64 GAS implementations have been removed,
since the intrinsics implementations provide the same or better
performance.
2020-11-10 19:09:09 -06:00
Jonathan Wright
4574f01f43 Neon: Intrinsics impl. of h2v1 & h2v2 plain upsamp
There was no previous GAS implementation.

NOTE: This doesn't produce much of a speedup when using -O3, because -O3
already enables Neon autovectorization, which works well for the scalar
C implementation of plain upsampling.  However, the Neon SIMD
implementation will benefit other optimization levels.
2020-11-10 19:09:09 -06:00
Jonathan Wright
ba52a3de32 Neon: Intrinsics impl of h2v1 & h2v2 merged upsamp
There was no previous GAS implementation.

This commit also reverts 40557b23015d2f8b576420231b8dd1f39f2ceed8 and
7723d7f7d0aa40349d5bdd1fbe4f8631fd5a2b57.
7723d7f7d0aa40349d5bdd1fbe4f8631fd5a2b57 was only necessary because
there was no Neon implementation of merged upsampling/color conversion,
and 40557b23015d2f8b576420231b8dd1f39f2ceed8 was only necessary because
of 7723d7f7d0aa40349d5bdd1fbe4f8631fd5a2b57.
2020-11-10 19:09:09 -06:00
Jonathan Wright
240ba417aa Neon: Intrinsics impl. of prog. Huffman encoding
The previous AArch64 GAS implementation has been removed, since the
intrinsics implementation provides the same or better performance.
There was no previous AArch32 GAS implementation.
2020-11-10 19:09:09 -06:00
Jonathan Wright
ed581cd935 Neon: Intrinsics impl. of accurate int inverse DCT
The previous AArch32 and AArch64 GAS implementations are retained by
default when using GCC, in order to avoid a performance regression.  The
intrinsics implementation can be forced on or off using the new
NEON_INTRINSICS CMake variable.
2020-11-10 19:09:09 -06:00
Jonathan Wright
2c6b68e283 Neon: Intrinsics impl. of fast integer Inverse DCT
The previous AArch32 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression.  The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable.  The previous AArch64 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
2020-11-10 19:09:09 -06:00
Jonathan Wright
2acfb93c94 Neon: Intrinsics impl. of h1v2 fancy upsamling
There was no previous GAS implementation.
2020-11-10 19:09:09 -06:00
Jonathan Wright
975307775c Neon: Intrinsics impl. of h2v1 & h2v2 fancy upsamp
The previous AArch32 GAS implementation of h2v1 fancy upsampling has
been removed, since the intrinsics implementation provides the same or
better performance.  There was no previous GAS implementation of h2v2
fancy upsampling, and there was no previous AArch64 GAS implementation
of h2v1 fancy upsampling.
2020-11-10 19:09:09 -06:00