- "bits per component" = "bits per sample"
Describing the data precision of a JPEG image using "bits per
component" is technically correct, but "bits per sample" is the
terminology that the JPEG-1 spec uses. Also, "bits per component" is
more commonly used to describe the precision of packed-pixel formats
(as opposed to "bits per pixel") rather than planar formats, in which
all components are grouped together.
- Unmention legacy display technologies. Colormapped and monochrome
displays aren't a thing anymore, and even when they were still a
thing, it was possible to display full-color images to them. In 1991,
when JPEG decompression time was measured in minutes per megapixel, it
made sense to keep a decompressed copy of JPEG images on disk, in a
format that could be displayed without further color conversion (since
color conversion was slow and memory-intensive.) In 2024, JPEG
decompression time is measured in milliseconds per megapixel, and
color conversion is even faster. Thus, JPEG images can be
decompressed, displayed, and color-converted (if necessary) "on the
fly" at speeds too fast for human vision to perceive. (In fact, your
TV performs much more complicated decompression algorithms at least 60
times per second.)
- Document that color quantization (and associated features), GIF
input/output, Targa input/output, and OS/2 BMP input/output are legacy
features. Legacy status doesn't necessarily mean that the features
are deprecated. Rather, it is meant to discourage users from using
features that may be of little or no benefit on modern machines (such
as low-quality modes that had significant performance advantages in
the early 1990s but no longer do) and that are maintained on a
break/fix basis only.
- General wordsmithing, grammar/punctuation policing, and formatting
tweaks
- Clarify which data precisions each cjpeg input format and each djpeg
output format supports.
- cjpeg.1: Remove unnecessary and impolitic statement about the -targa
switch.
- Adjust or remove performance claims to reflect the fact that:
* On modern machines, the djpeg "-fast" switch has a negligible effect
on performance.
* There is a measurable difference between the performance of Floyd-
Steinberg dithering and no dithering, but it is not likely
perceptible to most users.
* There is a measurable difference between the performance of 1-pass
and 2-pass color quantization, but it is not likely perceptible to
most users.
* There is a measurable difference between the performance of
full-color and grayscale output when decompressing a full-color JPEG
image, but it is not likely perceptible to most users.
* IDCT scaling does not necessarily improve performance. (It
generally does if the scaling factor is <= 1/2 and generally doesn't
if the scaling factor is > 1/2, at least on my machine. The
performance claim made in jpeg-6b was probably invalidated when we
merged the additional scaling factors from jpeg-7.)
- Clarify which djpeg switches/output formats cannot be used when
decompressing lossless JPEG images.
- Remove djpeg hints, since those involve quality vs. speed tradeoffs
that are no longer relevant for modern machines.
- Remove documentation regarding using color quantization with 16-bit
data precision. (Color quantization requires lossy mode.)
- Java: Fix typos in TJDecompressor.decompress12() and
TJDecompressor.decompress16() documentation.
- jpegtran.1: Fix truncated paragraph
In a man page, a single quote at the start of a line is interpreted as
a macro.
Closes#775
- libjpeg.txt:
* Mention J16SAMPLE data type (oversight.)
* Remove statement about extending jdcolor.c. (libjpeg-turbo is not
quite as DIY as libjpeg once was.)
* Remove paragraph about tweaking the various typedefs in jmorecfg.h.
It is no longer relevant for modern machines.
* Remove caveat regarding systems with ints less than 16 bits wide.
(ANSI/ISO C requires an int to be at least 16 bits wide, and
libjpeg-turbo has never supported non-ANSI compilers.)
- usage.txt:
* Add copyright header.
* Document cjpeg -icc, -memdst, -report, -strict, and -version
switches.
* Document djpeg -icc, -maxscans, -memsrc, -report, -skip, -crop,
-strict, and -version switches.
* Document jpegtran -icc, -maxscans, -report, -strict, and -version
switches.
This corresponds to max_memory_to_use in the jpeg_memory_mgr struct in
the libjpeg API, except that the TurboJPEG parameter is specified in
megabytes. Because this is 2023 and computers with less than 1 MB of
memory are not a thing (at least not within the scope of libjpeg-turbo
support), it isn't useful to allow a limit less than 1 MB to be
specified. Furthermore, because TurboJPEG parameters are signed
integers, if we allowed the memory limit to be specified in bytes, then
it would be impossible to specify a limit larger than 2 GB on 64-bit
machines. Because max_memory_to_use is a long signed integer,
effectively we can specify a limit of up to 2 petabytes on 64-bit
machines if the TurboJPEG parameter is specified in megabytes. (2 PB
should be enough for anybody, right?)
This commit also bumps the TurboJPEG API version to 3.0.1. Since the
TurboJPEG API version no longer tracks the libjpeg-turbo version, it
makes sense to increment the API revision number when adding constants,
to increment the minor version number when adding functions, and to
increment the major version number for a complete overhaul.
This commit also removes the vestigial TJ_NUMPARAM macro, which was
never defined because it proved unnecessary.
Partially implements #735
(ChangeLog update forthcoming)
- Prefix all function names with "tj3" and remove version suffixes from
function names. (Future API overhauls will increment the prefix to
"tj4", etc., thus retaining backward API/ABI compatibility without
versioning each individual function.)
- Replace stateless boolean flags (including TJ*FLAG_ARITHMETIC and
TJ*FLAG_LOSSLESS, which were never released) with stateful integer
parameters, the value of which persists between function calls.
* Use parameters for the JPEG quality and subsampling as well, in
order to eliminate the awkwardness of specifying function arguments
that weren't relevant for lossless compression.
* tj3DecompressHeader() now stores all relevant information about the
JPEG image, including the width, height, subsampling type, entropy
coding type, etc. in parameters rather than returning that
information in its arguments.
* TJ*FLAG_LIMITSCANS has been reimplemented as an integer parameter
(TJ*PARAM_SCANLIMIT) that allows the number of scans to be
specified.
- Use the const keyword for all pointer arguments to unmodified
buffers, as well as for both dimensions of 2D pointers. Addresses
#395.
- Use size_t rather than unsigned long to represent buffer sizes, since
unsigned long is a 32-bit type on Windows. Addresses #24.
- Return 0 from all buffer size functions if an error occurs, rather
than awkwardly trying to return -1 in an unsigned data type.
- Implement 12-bit and 16-bit data precision using dedicated
compression, decompression, and image I/O functions/methods.
* Suffix the names of all data-precision-specific functions with 8,
12, or 16.
* Because the YUV functions are intended to be used for video, they
are currently only implemented with 8-bit data precision, but they
can be expanded to 12-bit data precision in the future, if
necessary.
* Extend TJUnitTest and TJBench to test 12-bit and 16-bit data
precision, using a new -precision option.
* Add appropriate regression tests for all of the above to the 'test'
target.
* Extend tjbenchtest to test 12-bit and 16-bit data precision, and
add separate 'tjtest12' and 'tjtest16' targets.
* BufferedImage I/O in the Java API is currently limited to 8-bit
data precision, since the BufferedImage class does not
straightforwardly support higher data precisions.
* Extend the PPM reader to convert 12-bit and 16-bit PBMPLUS files
to grayscale or CMYK pixels, as it already does for 8-bit files.
- Properly accommodate lossless JPEG using dedicated parameters
(TJ*PARAM_LOSSLESS, TJ*PARAM_LOSSLESSPSV, and TJ*PARAM_LOSSLESSPT),
rather than using a flag and awkwardly repurposing the JPEG quality.
Update TJBench to properly reflect whether a JPEG image is lossless.
- Re-organize the TJBench usage screen.
- Update the Java docs using Java 11, to improve the formatting and
eliminate HTML frames.
- Use the accurate integer DCT algorithm by default for both
compression and decompression, since the "fast" algorithm is a legacy
feature, it does not pass the ISO compliance tests, and it is not
actually faster on modern x86 CPUs.
* Remove the -accuratedct option from TJBench and TJExample.
- Re-implement the 'tjtest' target using a CMake script that enables
the appropriate tests, depending on the data precision and whether or
not the Java API is part of the build.
- Consolidate the C and Java versions of tjbenchtest into one script.
- Consolidate the C and Java versions of tjexampletest into one script.
- Combine all initialization functions into a single function
(tj3Init()) that accepts an integer parameter specifying the
subsystems to initialize.
- Enable decompression scaling explicitly, using a new function/method
(tj3SetScalingFactor()/TJDecompressor.setScalingFactor()), rather
than implicitly using awkward "desired width"/"desired height"
parameters.
- Introduce a new macro/constant (TJUNSCALED/TJ.UNSCALED) that maps to
a scaling factor of 1/1.
- Implement partial image decompression, using a new function/method
(tj3SetCroppingRegion()/TJDecompressor.setCroppingRegion()) and
TJBench option (-crop). Extend tjbenchtest to test the new feature.
Addresses #1.
- Allow the JPEG colorspace to be specified explicitly when
compressing, using a new parameter (TJ*PARAM_COLORSPACE). This
allows JPEG images with the RGB and CMYK colorspaces to be created.
- Remove the error/difference image feature from TJBench. Identical
images to the ones that TJBench created can be generated using
ImageMagick with
'magick composite <original_image> <output_image> -compose difference <diff_image>'
- Handle JPEG images with unknown subsampling types. TJ*PARAM_SUBSAMP
is set to TJ*SAMP_UNKNOWN (== -1) for such images, but they can still
be decompressed fully into packed-pixel images or losslessly
transformed (with the exception of lossless cropping.) They cannot
be partially decompressed or decompressed into planar YUV images.
Note also that TJBench, due to its lack of support for imperfect
transforms, requires that the subsampling type be known when
rotating, flipping, or transversely transposing an image. Addresses
#436
- The Java version of TJBench now has identical functionality to the C
version. This was accomplished by (somewhat hackishly) calling the
TurboJPEG C image I/O functions through JNI and copying the pixels
between the C heap and the Java heap.
- Add parameters (TJ*PARAM_RESTARTROWS and TJ*PARAM_RESTARTBLOCKS) and
a TJBench option (-restart) to allow the restart marker interval to
be specified when compressing. Eliminate the undocumented TJ_RESTART
environment variable.
- Add a parameter (TJ*PARAM_OPTIMIZE), a transform option
(TJ*OPT_OPTIMIZE), and a TJBench option (-optimize) to allow
optimized baseline Huffman coding to be specified when compressing.
Eliminate the undocumented TJ_OPTIMIZE environment variable.
- Add parameters (TJ*PARAM_XDENSITY, TJ*PARAM_DENSITY, and
TJ*DENSITYUNITS) to allow the pixel density to be specified when
compressing or saving a Windows BMP image and to be queried when
decompressing or loading a Windows BMP image. Addresses #77.
- Refactor the fuzz targets to use the new API.
* Extend decompression coverage to 12-bit and 16-bit data precision.
* Replace the awkward cjpeg12 and cjpeg16 targets with proper
TurboJPEG-based compress12, compress12-lossless, and
compress16-lossless targets
- Fix innocuous UBSan warnings uncovered by the new fuzzers.
- Implement previous versions of the TurboJPEG API by wrapping the new
functions (tested by running the 2.1.x versions of TJBench, via
tjbenchtest, and TJUnitTest against the new implementation.)
* Remove all JNI functions for deprecated Java methods and implement
the deprecated methods using pure Java wrappers. It should be
understood that backward API compatibility in Java applies only to
the Java classes and that one cannot mix and match a JAR file from
one version of libjpeg-turbo with a JNI library from another
version.
- tj3Destroy() now silently accepts a NULL handle.
- tj3Alloc() and tj3Free() now return/accept void pointers, as malloc()
and free() do.
- The image I/O functions now accept a TurboJPEG instance handle, which
is used to transmit/receive parameters and to receive error
information.
Closes#517
- Wordsmithing, formatting, and grammar tweaks
- Various clarifications and corrections, including specifying whether
a particular buffer or image is used as a source or destination
- Accommodate/mention features that were introduced since the API
documentation was created.
- For clarity, use "packed-pixel" to describe uncompressed
source/destination images that are not planar YUV.
- Use "row" rather than "line" to refer to a single horizontal group of
pixels or component values, for consistency with the libjpeg API
documentation. (libjpeg also uses "scanline", which is a more archaic
term.)
- Use "alignment" rather than "padding" to refer to the number of bytes
by which a row's width is evenly divisible. This consistifies the
documention of the YUV functions and tjLoadImage(). ("Padding"
typically refers to the number of bytes added to each row, which is
not the same thing.)
- Remove all references to "the underlying codec." Although the
TurboJPEG API originated as a cross-platform wrapper for the Intel
Integrated Performance Primitives, Sun mediaLib, QuickTime, and
libjpeg, none of those TurboJPEG implementations has been maintained
since 2009. Nothing would prevent someone from implementing the
TurboJPEG API without libjpeg-turbo, but such an implementation would
not necessarily have an "underlying codec." (It could be fully
self-contained.)
- Use "destination image" rather than "output image", for consistency,
or describe the type of image that will be output.
- Avoid the term "image buffer" and instead use "byte buffer" to
refer to buffers that will hold JPEG images, or describe the type of
image that will be contained in the buffer. (The Java documentation
doesn't use "byte buffer", because the buffer arrays literally have
"byte" in front of them, and since Java doesn't have pointers, it is
not possible for mere mortals to store any other type of data in those
arrays.)
- C: Use "unified" to describe YUV images stored in a single buffer, for
consistency with the Java documentation.
- Use "planar YUV" rather than "YUV planar". Is is our convention to
describe images using {component layout} {colorspace/pixel format}
{image function}, e.g. "packed-pixel RGB source image" or "planar YUV
destination image."
- C: Document the TurboJPEG API version in which a particular function
or macro was introduced, and reorder the backward compatibility
function stubs in turbojpeg.h alphabetically by API version.
- C: Use Markdown rather than HTML tags, where possible, in the Doxygen
comments.
Also, set the red/green/blue offsets for TJPF_GRAY to -1 rather than 0.
It was undefined behavior for an application to use those arrays/methods
with TJPF_GRAY anyhow, and this makes it easier for applications to
programmatically detect whether a given pixel format has red, green, and
blue components.
Use a new checked exception type (TJException) when passing through
errors from the underlying C library. This gives the application a
choice of catching all exceptions or just those from TurboJPEG.
Throw IllegalArgumentException at the JNI level when arguments to the
JNI function are incorrect, and when one of the TurboJPEG "utility"
functions returns an error (because, per the C API specification, those
functions will only return an error if one of their arguments is out of
range.)
Remove "throws Exception" from the signature of any methods that no
longer pass through an error from the TurboJPEG C library.
Credit Viktor for the new code
Code formatting tweaks
Change the behavior of the bailif0() macro in the JNI wrapper so that it doesn't throw an exception for an unexpected NULL condition. In fact, in all cases, the underlying JNI API function (such as GetFieldID(), etc.) will throw an Error on its own whenever it returns NULL, so our custom exceptions were never being thrown in that case anyhow. All we need to do is just detect the error and bail out of the C code.
This also corrects a couple of formatting issues (semicolons aren't needed at the end of class definitions, and @Override should be specified for the methods we're overriding from super-classes, so the compiler can sanity-check that we're actually overriding a method and not declaring a new one.)
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1595 632fc199-4ca6-4c93-a231-07263d6284db