libjpeg-turbo/wrtarga.c
DRC e8b40f3c2b Vastly improve 12-bit JPEG integration
The Gordian knot that 7fec5074f962b20ed00b4f5da4533e1e8d4ed8ac attempted
to unravel was caused by the fact that there are several
data-precision-dependent (JSAMPLE-dependent) fields and methods in the
exposed libjpeg API structures, and if you change the exposed libjpeg
API structures, then you have to change the whole API.  If you change
the whole API, then you have to provide a whole new library to support
the new API, and that makes it difficult to support multiple data
precisions in the same application.  (It is not impossible, as example.c
demonstrated, but using data-precision-dependent libjpeg API structures
would have made the cjpeg, djpeg, and jpegtran source code hard to read,
so it made more sense to build, install, and package 12-bit-specific
versions of those applications.)

Unfortunately, the result of that initial integration effort was an
unreadable and unmaintainable mess, which is a problem for a library
that is an ISO/ITU-T reference implementation.  Also, as I dug into the
problem of lossless JPEG support, I realized that 16-bit lossless JPEG
images are a thing, and supporting yet another version of the libjpeg
API just for those images is untenable.

In fact, however, the touch points for JSAMPLE in the exposed libjpeg
API structures are minimal:

  - The colormap and sample_range_limit fields in jpeg_decompress_struct
  - The alloc_sarray() and access_virt_sarray() methods in
    jpeg_memory_mgr
  - jpeg_write_scanlines() and jpeg_write_raw_data()
  - jpeg_read_scanlines() and jpeg_read_raw_data()
  - jpeg_skip_scanlines() and jpeg_crop_scanline()
    (This is subtle, but both of those functions use JSAMPLE-dependent
    opaque structures behind the scenes.)

It is much more readable and maintainable to provide 12-bit-specific
versions of those six top-level API functions and to document that the
aforementioned methods and fields must be type-cast when using 12-bit
samples.  Since that eliminates the need to provide a 12-bit-specific
version of the exposed libjpeg API structures, we can:

  - Compile only the precision-dependent libjpeg modules (the
    coefficient buffer controllers, the colorspace converters, the
    DCT/IDCT managers, the main buffer controllers, the preprocessing
    and postprocessing controller, the downsampler and upsamplers, the
    quantizers, the integer DCT methods, and the IDCT methods) for
    multiple data precisions.
  - Introduce 12-bit-specific methods into the various internal
    structures defined in jpegint.h.
  - Create precision-independent data type, macro, method, field, and
    function names that are prefixed by an underscore, and use an
    internal header to convert those into precision-dependent data
    type, macro, method, field, and function names, based on the value
    of BITS_IN_JSAMPLE, when compiling the precision-dependent libjpeg
    modules.
  - Expose precision-dependent jinit*() functions for each of the
    precision-dependent libjpeg modules.
  - Abstract the precision-dependent libjpeg modules by calling the
    appropriate precision-dependent jinit*() function, based on the
    value of cinfo->data_precision, from top-level libjpeg API
    functions.
2022-11-04 12:30:33 -05:00

262 lines
7.4 KiB
C

/*
* wrtarga.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1996, Thomas G. Lane.
* libjpeg-turbo Modifications:
* Copyright (C) 2017, 2019, 2022, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file contains routines to write output images in Targa format.
*
* These routines may need modification for non-Unix environments or
* specialized applications. As they stand, they assume output to
* an ordinary stdio stream.
*
* Based on code contributed by Lee Daniel Crocker.
*/
#include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */
#ifdef TARGA_SUPPORTED
/*
* To support 12-bit JPEG data, we'd have to scale output down to 8 bits.
* This is not yet implemented.
*/
#if BITS_IN_JSAMPLE != 8
Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */
#endif
/* Private version of data destination object */
typedef struct {
struct djpeg_dest_struct pub; /* public fields */
char *iobuffer; /* physical I/O buffer */
JDIMENSION buffer_width; /* width of one row */
} tga_dest_struct;
typedef tga_dest_struct *tga_dest_ptr;
LOCAL(void)
write_header(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, int num_colors)
/* Create and write a Targa header */
{
char targaheader[18];
/* Set unused fields of header to 0 */
memset(targaheader, 0, sizeof(targaheader));
if (num_colors > 0) {
targaheader[1] = 1; /* color map type 1 */
targaheader[5] = (char)(num_colors & 0xFF);
targaheader[6] = (char)(num_colors >> 8);
targaheader[7] = 24; /* 24 bits per cmap entry */
}
targaheader[12] = (char)(cinfo->output_width & 0xFF);
targaheader[13] = (char)(cinfo->output_width >> 8);
targaheader[14] = (char)(cinfo->output_height & 0xFF);
targaheader[15] = (char)(cinfo->output_height >> 8);
targaheader[17] = 0x20; /* Top-down, non-interlaced */
if (cinfo->out_color_space == JCS_GRAYSCALE) {
targaheader[2] = 3; /* image type = uncompressed grayscale */
targaheader[16] = 8; /* bits per pixel */
} else { /* must be RGB */
if (num_colors > 0) {
targaheader[2] = 1; /* image type = colormapped RGB */
targaheader[16] = 8;
} else {
targaheader[2] = 2; /* image type = uncompressed RGB */
targaheader[16] = 24;
}
}
if (fwrite(targaheader, 1, 18, dinfo->output_file) != (size_t)18)
ERREXIT(cinfo, JERR_FILE_WRITE);
}
/*
* Write some pixel data.
* In this module rows_supplied will always be 1.
*/
METHODDEF(void)
put_pixel_rows(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
JDIMENSION rows_supplied)
/* used for unquantized full-color output */
{
tga_dest_ptr dest = (tga_dest_ptr)dinfo;
register JSAMPROW inptr;
register char *outptr;
register JDIMENSION col;
inptr = dest->pub.buffer[0];
outptr = dest->iobuffer;
for (col = cinfo->output_width; col > 0; col--) {
outptr[0] = inptr[2]; /* RGB to BGR order */
outptr[1] = inptr[1];
outptr[2] = inptr[0];
inptr += 3, outptr += 3;
}
fwrite(dest->iobuffer, 1, dest->buffer_width, dest->pub.output_file);
}
METHODDEF(void)
put_gray_rows(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
JDIMENSION rows_supplied)
/* used for grayscale OR quantized color output */
{
tga_dest_ptr dest = (tga_dest_ptr)dinfo;
register JSAMPROW inptr;
register char *outptr;
inptr = dest->pub.buffer[0];
outptr = dest->iobuffer;
memcpy(outptr, inptr, cinfo->output_width);
fwrite(dest->iobuffer, 1, dest->buffer_width, dest->pub.output_file);
}
/*
* Write some demapped pixel data when color quantization is in effect.
* For Targa, this is only applied to grayscale data.
*/
METHODDEF(void)
put_demapped_gray(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
JDIMENSION rows_supplied)
{
tga_dest_ptr dest = (tga_dest_ptr)dinfo;
register JSAMPROW inptr;
register char *outptr;
register JSAMPROW color_map0 = cinfo->colormap[0];
register JDIMENSION col;
inptr = dest->pub.buffer[0];
outptr = dest->iobuffer;
for (col = cinfo->output_width; col > 0; col--) {
*outptr++ = color_map0[*inptr++];
}
fwrite(dest->iobuffer, 1, dest->buffer_width, dest->pub.output_file);
}
/*
* Startup: write the file header.
*/
METHODDEF(void)
start_output_tga(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
{
tga_dest_ptr dest = (tga_dest_ptr)dinfo;
int num_colors, i;
FILE *outfile;
if (cinfo->out_color_space == JCS_GRAYSCALE) {
/* Targa doesn't have a mapped grayscale format, so we will */
/* demap quantized gray output. Never emit a colormap. */
write_header(cinfo, dinfo, 0);
if (cinfo->quantize_colors)
dest->pub.put_pixel_rows = put_demapped_gray;
else
dest->pub.put_pixel_rows = put_gray_rows;
} else if (cinfo->out_color_space == JCS_RGB) {
if (cinfo->quantize_colors) {
/* We only support 8-bit colormap indexes, so only 256 colors */
num_colors = cinfo->actual_number_of_colors;
if (num_colors > 256)
ERREXIT1(cinfo, JERR_TOO_MANY_COLORS, num_colors);
write_header(cinfo, dinfo, num_colors);
/* Write the colormap. Note Targa uses BGR byte order */
outfile = dest->pub.output_file;
for (i = 0; i < num_colors; i++) {
putc(cinfo->colormap[2][i], outfile);
putc(cinfo->colormap[1][i], outfile);
putc(cinfo->colormap[0][i], outfile);
}
dest->pub.put_pixel_rows = put_gray_rows;
} else {
write_header(cinfo, dinfo, 0);
dest->pub.put_pixel_rows = put_pixel_rows;
}
} else {
ERREXIT(cinfo, JERR_TGA_COLORSPACE);
}
}
/*
* Finish up at the end of the file.
*/
METHODDEF(void)
finish_output_tga(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
{
/* Make sure we wrote the output file OK */
fflush(dinfo->output_file);
if (ferror(dinfo->output_file))
ERREXIT(cinfo, JERR_FILE_WRITE);
}
/*
* Re-calculate buffer dimensions based on output dimensions.
*/
METHODDEF(void)
calc_buffer_dimensions_tga(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
{
tga_dest_ptr dest = (tga_dest_ptr)dinfo;
dest->buffer_width = cinfo->output_width * cinfo->output_components;
}
/*
* The module selection routine for Targa format output.
*/
GLOBAL(djpeg_dest_ptr)
jinit_write_targa(j_decompress_ptr cinfo)
{
tga_dest_ptr dest;
if (cinfo->data_precision != 8)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Create module interface object, fill in method pointers */
dest = (tga_dest_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
sizeof(tga_dest_struct));
dest->pub.start_output = start_output_tga;
dest->pub.finish_output = finish_output_tga;
dest->pub.calc_buffer_dimensions = calc_buffer_dimensions_tga;
/* Calculate output image dimensions so we can allocate space */
jpeg_calc_output_dimensions(cinfo);
/* Create I/O buffer. */
dest->pub.calc_buffer_dimensions(cinfo, (djpeg_dest_ptr)dest);
dest->iobuffer = (char *)
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
(size_t)(dest->buffer_width * sizeof(char)));
/* Create decompressor output buffer. */
dest->pub.buffer = (*cinfo->mem->alloc_sarray)
((j_common_ptr)cinfo, JPOOL_IMAGE, dest->buffer_width, (JDIMENSION)1);
dest->pub.buffer_height = 1;
return (djpeg_dest_ptr)dest;
}
#endif /* TARGA_SUPPORTED */