1
0
mirror of https://github.com/libuv/libuv synced 2025-03-28 21:13:16 +00:00
libuv/test/test-udp-reuseport.c
Andy Pan ba24986f8d
unix: support SO_REUSEPORT with load balancing for UDP (#4419)
Signed-off-by: Andy Pan <i@andypan.me>
2024-06-20 17:17:17 +02:00

288 lines
8.0 KiB
C

/* Copyright libuv project contributors. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "uv.h"
#include "task.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if !defined(__linux__) && !defined(__FreeBSD__) && \
!defined(__DragonFly__) && !defined(__sun) && !defined(_AIX73)
TEST_IMPL(udp_reuseport) {
struct sockaddr_in addr1, addr2, addr3;
uv_loop_t* loop;
uv_udp_t handle1, handle2, handle3;
int r;
ASSERT_OK(uv_ip4_addr("127.0.0.1", TEST_PORT, &addr1));
ASSERT_OK(uv_ip4_addr("127.0.0.1", TEST_PORT_2, &addr2));
ASSERT_OK(uv_ip4_addr("127.0.0.1", TEST_PORT_3, &addr3));
loop = uv_default_loop();
ASSERT_NOT_NULL(loop);
r = uv_udp_init(loop, &handle1);
ASSERT_OK(r);
r = uv_udp_bind(&handle1, (const struct sockaddr*) &addr1, UV_UDP_REUSEADDR);
ASSERT_OK(r);
r = uv_udp_init(loop, &handle2);
ASSERT_OK(r);
r = uv_udp_bind(&handle2, (const struct sockaddr*) &addr2, UV_UDP_REUSEPORT);
ASSERT_EQ(r, UV_ENOTSUP);
r = uv_udp_init(loop, &handle3);
ASSERT_OK(r);
/* For platforms where SO_REUSEPORTs don't have the capability of
* load balancing, specifying both UV_UDP_REUSEADDR and UV_UDP_REUSEPORT
* in flags will fail, returning an UV_ENOTSUP error. */
r = uv_udp_bind(&handle3, (const struct sockaddr*) &addr3,
UV_UDP_REUSEADDR | UV_UDP_REUSEPORT);
ASSERT_EQ(r, UV_ENOTSUP);
MAKE_VALGRIND_HAPPY(loop);
return 0;
}
#else
#define NUM_RECEIVING_THREADS 2
#define MAX_UDP_DATAGRAMS 10
static uv_udp_t udp_send_handles[MAX_UDP_DATAGRAMS];
static uv_udp_send_t udp_send_requests[MAX_UDP_DATAGRAMS];
static uv_sem_t semaphore;
static uv_mutex_t mutex;
static unsigned int received;
static unsigned int thread_loop1_recv;
static unsigned int thread_loop2_recv;
static unsigned int sent;
static uv_loop_t* main_loop;
static uv_loop_t thread_loop1;
static uv_loop_t thread_loop2;
static uv_udp_t thread_handle1;
static uv_udp_t thread_handle2;
static uv_timer_t thread_timer_handle1;
static uv_timer_t thread_timer_handle2;
static void alloc_cb(uv_handle_t* handle,
size_t suggested_size,
uv_buf_t* buf) {
buf->base = malloc(suggested_size);
buf->len = (int) suggested_size;
}
static void ticktack(uv_timer_t* timer) {
int done = 0;
ASSERT(timer == &thread_timer_handle1 || timer == &thread_timer_handle2);
uv_mutex_lock(&mutex);
if (received == MAX_UDP_DATAGRAMS) {
done = 1;
}
uv_mutex_unlock(&mutex);
if (done) {
uv_close((uv_handle_t*) timer, NULL);
if (timer->loop == &thread_loop1)
uv_close((uv_handle_t*) &thread_handle1, NULL);
if (timer->loop == &thread_loop2)
uv_close((uv_handle_t*) &thread_handle2, NULL);
}
}
static void on_recv(uv_udp_t* handle,
ssize_t nr,
const uv_buf_t* buf,
const struct sockaddr* addr,
unsigned flags) {
ASSERT_OK(flags);
ASSERT(handle == &thread_handle1 || handle == &thread_handle2);
ASSERT_GE(nr, 0);
if (nr == 0) {
ASSERT_NULL(addr);
free(buf->base);
return;
}
ASSERT_NOT_NULL(addr);
ASSERT_EQ(5, nr);
ASSERT(!memcmp("Hello", buf->base, nr));
free(buf->base);
if (handle->loop == &thread_loop1)
thread_loop1_recv++;
if (handle->loop == &thread_loop2)
thread_loop2_recv++;
uv_mutex_lock(&mutex);
received++;
uv_mutex_unlock(&mutex);
}
static void on_send(uv_udp_send_t* req, int status) {
ASSERT_OK(status);
ASSERT_PTR_EQ(req->handle->loop, main_loop);
if (++sent == MAX_UDP_DATAGRAMS)
uv_close((uv_handle_t*) req->handle, NULL);
}
static void bind_socket_and_prepare_recv(uv_loop_t* loop, uv_udp_t* handle) {
struct sockaddr_in addr;
int r;
ASSERT_OK(uv_ip4_addr("127.0.0.1", TEST_PORT, &addr));
r = uv_udp_init(loop, handle);
ASSERT_OK(r);
/* For platforms where SO_REUSEPORTs have the capability of
* load balancing, specifying both UV_UDP_REUSEADDR and
* UV_UDP_REUSEPORT in flags is allowed and SO_REUSEPORT will
* always override the behavior of SO_REUSEADDR. */
r = uv_udp_bind(handle, (const struct sockaddr*) &addr,
UV_UDP_REUSEADDR | UV_UDP_REUSEPORT);
ASSERT_OK(r);
r = uv_udp_recv_start(handle, alloc_cb, on_recv);
ASSERT_OK(r);
}
static void run_event_loop(void* arg) {
int r;
uv_udp_t* handle;
uv_timer_t* timer;
uv_loop_t* loop = (uv_loop_t*) arg;
ASSERT(loop == &thread_loop1 || loop == &thread_loop2);
if (loop == &thread_loop1) {
handle = &thread_handle1;
timer = &thread_timer_handle1;
} else {
handle = &thread_handle2;
timer = &thread_timer_handle2;
}
bind_socket_and_prepare_recv(loop, handle);
r = uv_timer_init(loop, timer);
ASSERT_OK(r);
r = uv_timer_start(timer, ticktack, 0, 10);
ASSERT_OK(r);
/* Notify the main thread to start sending data. */
uv_sem_post(&semaphore);
r = uv_run(loop, UV_RUN_DEFAULT);
ASSERT_OK(r);
}
TEST_IMPL(udp_reuseport) {
struct sockaddr_in addr;
uv_buf_t buf;
int r;
int i;
r = uv_mutex_init(&mutex);
ASSERT_OK(r);
r = uv_sem_init(&semaphore, 0);
ASSERT_OK(r);
main_loop = uv_default_loop();
ASSERT_NOT_NULL(main_loop);
/* Run event loops of receiving sockets in separate threads. */
uv_loop_init(&thread_loop1);
uv_loop_init(&thread_loop2);
uv_thread_t thread_loop_id1;
uv_thread_t thread_loop_id2;
uv_thread_create(&thread_loop_id1, run_event_loop, &thread_loop1);
uv_thread_create(&thread_loop_id2, run_event_loop, &thread_loop2);
/* Wait until all threads to poll for receiving datagrams
* before we start to sending. Otherwise the incoming datagrams
* might not be distributed across all receiving threads. */
for (i = 0; i < NUM_RECEIVING_THREADS; i++)
uv_sem_wait(&semaphore);
/* Now we know all threads are up and entering the uv_run(),
* but we still sleep a little bit just for dual fail-safe. */
uv_sleep(100);
/* Start sending datagrams to the peers. */
buf = uv_buf_init("Hello", 5);
ASSERT_OK(uv_ip4_addr("127.0.0.1", TEST_PORT, &addr));
for (i = 0; i < MAX_UDP_DATAGRAMS; i++) {
r = uv_udp_init(main_loop, &udp_send_handles[i]);
ASSERT_OK(r);
r = uv_udp_send(&udp_send_requests[i],
&udp_send_handles[i],
&buf,
1,
(const struct sockaddr*) &addr,
on_send);
ASSERT_OK(r);
}
r = uv_run(main_loop, UV_RUN_DEFAULT);
ASSERT_OK(r);
/* Wait for all threads to exit. */
uv_thread_join(&thread_loop_id1);
uv_thread_join(&thread_loop_id2);
/* Verify if each receiving socket per event loop received datagrams
* and the amount of received datagrams matches the one of sent datagrams.
*/
ASSERT_EQ(received, MAX_UDP_DATAGRAMS);
ASSERT_EQ(sent, MAX_UDP_DATAGRAMS);
ASSERT_GT(thread_loop1_recv, 0);
ASSERT_GT(thread_loop2_recv, 0);
ASSERT_EQ(thread_loop1_recv + thread_loop2_recv, sent);
/* Clean up. */
uv_mutex_destroy(&mutex);
uv_sem_destroy(&semaphore);
uv_loop_close(&thread_loop1);
uv_loop_close(&thread_loop2);
MAKE_VALGRIND_HAPPY(main_loop);
return 0;
}
#endif