Added support for using unmodified verison of liblzma.

Upgraded liblzma to 5.3.1.
This commit is contained in:
Nathan Moinvaziri 2020-10-11 23:02:12 -07:00
parent 3ac4d741b3
commit 1561db36c6
27 changed files with 599 additions and 261 deletions

View File

@ -98,7 +98,7 @@ cmake --build .
|-|-|-|-|
|[aes](https://github.com/BrianGladman/aes)|[license](https://github.com/BrianGladman/aes/blob/master/license.txt)|`MZ_BRG`|Written by Brian Gladman. Compiled in when system crypto functions are unavailable.|
[bzip2](https://www.sourceware.org/bzip2/)|[license](https://github.com/nmoinvaz/minizip/blob/dev/lib/bzip2/LICENSE)|`MZ_BZIP2`|Written by Julian Seward.|
|[liblzma](https://tukaani.org/xz/)|Public domain|`MZ_LZMA`|Written by Igor Pavlov and Lasse Collin. Modifications were made to support the ZIP file format specification.|
|[liblzma](https://tukaani.org/xz/)|Public domain|`MZ_LZMA`|Written by Igor Pavlov and Lasse Collin.|
|[sha](https://github.com/BrianGladman/sha)|[license](https://github.com/BrianGladman/aes/blob/master/license.txt)|`MZ_BRG`|Written by Brian Gladman. Compiled in when system crypto functions are unavailable.|
|[zlib](https://zlib.net/)|zlib|`MZ_ZLIB`|Written by Mark Adler and Jean-loup Gailly. Not included in this repository. Or alternatively, [zlib-ng](https://github.com/Dead2/zlib-ng) by Hans Kristian Rosbach.|
|[zstd](https://github.com/facebook/zstd)|[BSD](https://github.com/facebook/zstd/blob/dev/LICENSE)|`MZ_ZSTD`|Written by Facebook. Not included in this repository.|

View File

@ -224,7 +224,8 @@
# else
# define lzma_nothrow throw()
# endif
# elif __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 3)
# elif defined(__GNUC__) && (__GNUC__ > 3 \
|| (__GNUC__ == 3 && __GNUC_MINOR__ >= 3))
# define lzma_nothrow __attribute__((__nothrow__))
# else
# define lzma_nothrow
@ -241,7 +242,7 @@
* break anything if these are sometimes enabled and sometimes not, only
* affects warnings and optimizations.
*/
#if __GNUC__ >= 3
#if defined(__GNUC__) && __GNUC__ >= 3
# ifndef lzma_attribute
# define lzma_attribute(attr) __attribute__(attr)
# endif

View File

@ -234,6 +234,36 @@ typedef enum {
* can be a sign of a bug in liblzma. See the documentation
* how to report bugs.
*/
LZMA_SEEK_NEEDED = 12,
/**<
* \brief Request to change the input file position
*
* Some coders can do random access in the input file. The
* initialization functions of these coders take the file size
* as an argument. No other coders can return LZMA_SEEK_NEEDED.
*
* When this value is returned, the application must seek to
* the file position given in lzma_stream.seek_pos. This value
* is guaranteed to never exceed the file size that was
* specified at the coder initialization.
*
* After seeking the application should read new input and
* pass it normally via lzma_stream.next_in and .avail_in.
*/
/*
* These eumerations may be used internally by liblzma
* but they will never be returned to applications.
*/
LZMA_RET_INTERNAL1 = 101,
LZMA_RET_INTERNAL2 = 102,
LZMA_RET_INTERNAL3 = 103,
LZMA_RET_INTERNAL4 = 104,
LZMA_RET_INTERNAL5 = 105,
LZMA_RET_INTERNAL6 = 106,
LZMA_RET_INTERNAL7 = 107,
LZMA_RET_INTERNAL8 = 108
} lzma_ret;
@ -447,7 +477,7 @@ typedef struct lzma_internal_s lzma_internal;
*
* The lzma_stream structure is used for
* - passing pointers to input and output buffers to liblzma;
* - defining custom memory handler functions; and
* - defining custom memory hander functions; and
* - holding a pointer to coder-specific internal data structures.
*
* Typical usage:
@ -514,7 +544,19 @@ typedef struct {
void *reserved_ptr2;
void *reserved_ptr3;
void *reserved_ptr4;
uint64_t reserved_int1;
/**
* \brief New seek input position for LZMA_SEEK_NEEDED
*
* When lzma_code() returns LZMA_SEEK_NEEDED, the new input position
* needed by liblzma will be available seek_pos. The value is
* guaranteed to not exceed the file size that was specified when
* this lzma_stream was initialized.
*
* In all other situations the value of this variable is undefined.
*/
uint64_t seek_pos;
uint64_t reserved_int2;
size_t reserved_int3;
size_t reserved_int4;

View File

@ -341,9 +341,10 @@ extern LZMA_API(lzma_ret) lzma_properties_encode(
* \param filter filter->id must have been set to the correct
* Filter ID. filter->options doesn't need to be
* initialized (it's not freed by this function). The
* decoded options will be stored to filter->options.
* filter->options is set to NULL if there are no
* properties or if an error occurs.
* decoded options will be stored in filter->options;
* it's application's responsibility to free it when
* appropriate. filter->options is set to NULL if
* there are no properties or if an error occurs.
* \param allocator Custom memory allocator used to allocate the
* options. Set to NULL to use the default malloc(),
* and in case of an error, also free().

View File

@ -21,9 +21,9 @@
* Version number split into components
*/
#define LZMA_VERSION_MAJOR 5
#define LZMA_VERSION_MINOR 2
#define LZMA_VERSION_PATCH 4
#define LZMA_VERSION_STABILITY LZMA_VERSION_STABILITY_STABLE
#define LZMA_VERSION_MINOR 3
#define LZMA_VERSION_PATCH 1
#define LZMA_VERSION_STABILITY LZMA_VERSION_STABILITY_ALPHA
#ifndef LZMA_VERSION_COMMIT
# define LZMA_VERSION_COMMIT ""

View File

@ -49,7 +49,7 @@ lzma_crc32(const uint8_t *buf, size_t size, uint32_t crc)
// Calculate the CRC32 using the slice-by-eight algorithm.
while (buf < limit) {
crc ^= *(const uint32_t *)(buf);
crc ^= aligned_read32ne(buf);
buf += 4;
crc = lzma_crc32_table[7][A(crc)]
@ -57,7 +57,7 @@ lzma_crc32(const uint8_t *buf, size_t size, uint32_t crc)
^ lzma_crc32_table[5][C(crc)]
^ lzma_crc32_table[4][D(crc)];
const uint32_t tmp = *(const uint32_t *)(buf);
const uint32_t tmp = aligned_read32ne(buf);
buf += 4;
// At least with some compilers, it is critical for

View File

@ -12,6 +12,9 @@
#include "common.h"
// Having the declaration here silences clang -Wmissing-variable-declarations.
extern const uint32_t lzma_crc32_table[8][256];
#ifdef WORDS_BIGENDIAN
# include "crc32_table_be.h"
#else

View File

@ -50,8 +50,7 @@ typedef struct {
static lzma_ret
alone_decode(void *coder_ptr,
const lzma_allocator *allocator lzma_attribute((__unused__)),
alone_decode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size,
@ -73,30 +72,49 @@ alone_decode(void *coder_ptr,
case SEQ_DICTIONARY_SIZE:
coder->options.dict_size
|= (size_t)(in[*in_pos]) << (coder->pos * 8);
++*in_pos;
if (++coder->pos < 4)
break;
if (coder->picky && coder->options.dict_size
!= UINT32_MAX) {
// A hack to ditch tons of false positives:
// We allow only dictionary sizes that are
// 2^n or 2^n + 2^(n-1). LZMA_Alone created
// only files with 2^n, but accepts any
// dictionary size.
uint32_t d = coder->options.dict_size - 1;
d |= d >> 2;
d |= d >> 3;
d |= d >> 4;
d |= d >> 8;
d |= d >> 16;
++d;
if (++coder->pos == 4) {
if (coder->picky && coder->options.dict_size
!= UINT32_MAX) {
// A hack to ditch tons of false positives:
// We allow only dictionary sizes that are
// 2^n or 2^n + 2^(n-1). LZMA_Alone created
// only files with 2^n, but accepts any
// dictionary size.
uint32_t d = coder->options.dict_size - 1;
d |= d >> 2;
d |= d >> 3;
d |= d >> 4;
d |= d >> 8;
d |= d >> 16;
++d;
if (d != coder->options.dict_size)
return LZMA_FORMAT_ERROR;
if (d != coder->options.dict_size)
return LZMA_FORMAT_ERROR;
}
coder->pos = 0;
coder->sequence = SEQ_UNCOMPRESSED_SIZE;
}
coder->uncompressed_size = LZMA_VLI_UNKNOWN;
++*in_pos;
break;
case SEQ_UNCOMPRESSED_SIZE:
coder->uncompressed_size
|= (lzma_vli)(in[*in_pos]) << (coder->pos * 8);
++*in_pos;
if (++coder->pos < 8)
break;
// Another hack to ditch false positives: Assume that
// if the uncompressed size is known, it must be less
// than 256 GiB.
if (coder->picky
&& coder->uncompressed_size != LZMA_VLI_UNKNOWN
&& coder->uncompressed_size
>= (LZMA_VLI_C(1) << 38))
return LZMA_FORMAT_ERROR;
// Calculate the memory usage so that it is ready
// for SEQ_CODER_INIT.

View File

@ -1,7 +1,7 @@
///////////////////////////////////////////////////////////////////////////////
//
/// \file alone_decoder.c
/// \brief Decoder for LZMA_Alone files
/// \file alone_encoder.c
/// \brief Encoder for LZMA_Alone files
//
// Author: Lasse Collin
//
@ -14,7 +14,7 @@
#include "lzma_encoder.h"
#define ALONE_HEADER_SIZE (1 + 4)
#define ALONE_HEADER_SIZE (1 + 4 + 8)
typedef struct {
@ -31,8 +31,7 @@ typedef struct {
static lzma_ret
alone_encode(void *coder_ptr,
const lzma_allocator *allocator lzma_attribute((__unused__)),
alone_encode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size,
@ -122,7 +121,10 @@ alone_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
if (d != UINT32_MAX)
++d;
unaligned_write32le(coder->header + 1, d);
write32le(coder->header + 1, d);
// - Uncompressed size (always unknown and using EOPM)
memset(coder->header + 1 + 4, 0xFF, 8);
// Initialize the LZMA encoder.
const lzma_filter_info filters[2] = {

View File

@ -1,6 +1,6 @@
///////////////////////////////////////////////////////////////////////////////
//
/// \file common.h
/// \file common.c
/// \brief Common functions needed in many places in liblzma
//
// Author: Lasse Collin
@ -99,7 +99,11 @@ lzma_bufcpy(const uint8_t *restrict in, size_t *restrict in_pos,
const size_t out_avail = out_size - *out_pos;
const size_t copy_size = my_min(in_avail, out_avail);
memcpy(out + *out_pos, in + *in_pos, copy_size);
// Call memcpy() only if there is something to copy. If there is
// nothing to copy, in or out might be NULL and then the memcpy()
// call would trigger undefined behavior.
if (copy_size > 0)
memcpy(out + *out_pos, in + *in_pos, copy_size);
*in_pos += copy_size;
*out_pos += copy_size;
@ -207,7 +211,6 @@ lzma_code(lzma_stream *strm, lzma_action action)
|| strm->reserved_ptr2 != NULL
|| strm->reserved_ptr3 != NULL
|| strm->reserved_ptr4 != NULL
|| strm->reserved_int1 != 0
|| strm->reserved_int2 != 0
|| strm->reserved_int3 != 0
|| strm->reserved_int4 != 0
@ -295,9 +298,7 @@ lzma_code(lzma_stream *strm, lzma_action action)
strm->internal->avail_in = strm->avail_in;
// Cast is needed to silence a warning about LZMA_TIMED_OUT, which
// isn't part of lzma_ret enumeration.
switch ((unsigned int)(ret)) {
switch (ret) {
case LZMA_OK:
// Don't return LZMA_BUF_ERROR when it happens the first time.
// This is to avoid returning LZMA_BUF_ERROR when avail_out
@ -318,6 +319,17 @@ lzma_code(lzma_stream *strm, lzma_action action)
ret = LZMA_OK;
break;
case LZMA_SEEK_NEEDED:
strm->internal->allow_buf_error = false;
// If LZMA_FINISH was used, reset it back to the
// LZMA_RUN-based state so that new input can be supplied
// by the application.
if (strm->internal->sequence == ISEQ_FINISH)
strm->internal->sequence = ISEQ_RUN;
break;
case LZMA_STREAM_END:
if (strm->internal->sequence == ISEQ_SYNC_FLUSH
|| strm->internal->sequence == ISEQ_FULL_FLUSH

View File

@ -82,9 +82,8 @@
/// Special return value (lzma_ret) to indicate that a timeout was reached
/// and lzma_code() must not return LZMA_BUF_ERROR. This is converted to
/// LZMA_OK in lzma_code(). This is not in the lzma_ret enumeration because
/// there's no need to have it in the public API.
#define LZMA_TIMED_OUT 32
/// LZMA_OK in lzma_code().
#define LZMA_TIMED_OUT LZMA_RET_INTERNAL1
typedef struct lzma_next_coder_s lzma_next_coder;

View File

@ -163,8 +163,7 @@ static const lzma_filter_encoder encoders[] = {
static const lzma_filter_encoder *
encoder_find(lzma_vli id)
{
size_t i = 0;
for (i = 0; i < ARRAY_SIZE(encoders); ++i)
for (size_t i = 0; i < ARRAY_SIZE(encoders); ++i)
if (encoders[i].id == id)
return encoders + i;
@ -183,9 +182,8 @@ extern uint64_t
lzma_mt_block_size(const lzma_filter *filters)
{
uint64_t max = 0;
size_t i = 0;
for (i = 0; filters[i].id != LZMA_VLI_UNKNOWN; ++i) {
for (size_t i = 0; filters[i].id != LZMA_VLI_UNKNOWN; ++i) {
const lzma_filter_encoder *const fe
= encoder_find(filters[i].id);
if (fe->block_size != NULL) {

View File

@ -16,12 +16,8 @@
#include "common.h"
#ifdef HAVE_IMMINTRIN_H
#if (defined(__GNUC__) && defined(__SSE2_MATH__)) || \
(defined(__INTEL_COMPILER) && defined(__SSE2__)) || \
(defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP >= 2)
# include <immintrin.h>
#endif
#endif
/// Find out how many equal bytes the two buffers have.
@ -65,11 +61,9 @@ lzma_memcmplen(const uint8_t *buf1, const uint8_t *buf2,
// to __builtin_clzll().
#define LZMA_MEMCMPLEN_EXTRA 8
while (len < limit) {
const uint64_t x = *(const uint64_t *)(buf1 + len)
- *(const uint64_t *)(buf2 + len);
const uint64_t x = read64ne(buf1 + len) - read64ne(buf2 + len);
if (x != 0) {
# if defined(_M_X64) && defined(_WIN32) \
&& (defined(_MSC_VER) || defined(__INTEL_COMPILER)) // MSVC or Intel C compiler on Windows
# if defined(_M_X64) // MSVC or Intel C compiler on Windows
unsigned long tmp;
_BitScanForward64(&tmp, x);
len += (uint32_t)tmp >> 3;
@ -104,15 +98,7 @@ lzma_memcmplen(const uint8_t *buf1, const uint8_t *buf2,
_mm_loadu_si128((const __m128i *)(buf2 + len))));
if (x != 0) {
# if defined(__INTEL_COMPILER)
len += _bit_scan_forward(x);
# elif defined(_MSC_VER)
unsigned long tmp = 0;
_BitScanForward(&tmp, x);
len += tmp;
# else
len += __builtin_ctz(x);
# endif
len += ctz32(x);
return my_min(len, limit);
}
@ -125,8 +111,7 @@ lzma_memcmplen(const uint8_t *buf1, const uint8_t *buf2,
// Generic 32-bit little endian method
# define LZMA_MEMCMPLEN_EXTRA 4
while (len < limit) {
uint32_t x = *(const uint32_t *)(buf1 + len)
- *(const uint32_t *)(buf2 + len);
uint32_t x = read32ne(buf1 + len) - read32ne(buf2 + len);
if (x != 0) {
if ((x & 0xFFFF) == 0) {
len += 2;
@ -148,8 +133,7 @@ lzma_memcmplen(const uint8_t *buf1, const uint8_t *buf2,
// Generic 32-bit big endian method
# define LZMA_MEMCMPLEN_EXTRA 4
while (len < limit) {
uint32_t x = *(const uint32_t *)(buf1 + len)
^ *(const uint32_t *)(buf2 + len);
uint32_t x = read32ne(buf1 + len) ^ read32ne(buf2 + len);
if (x != 0) {
if ((x & 0xFFFF0000) == 0) {
len += 2;

View File

@ -14,7 +14,7 @@
#define TUKLIB_COMMON_H
// The config file may be replaced by a package-specific file.
// It should include at least stddef.h, inttypes.h, and limits.h.
// It should include at least stddef.h, stdbool.h, inttypes.h, and limits.h.
#include "tuklib_config.h"
// TUKLIB_SYMBOL_PREFIX is prefixed to all symbols exported by

View File

@ -1,7 +1,10 @@
// If config.h isn't available, assume that the headers required by
// tuklib_common.h are available. This is required by crc32_tablegen.c.
#ifdef HAVE_CONFIG_H
# include "sysdefs.h"
#else
# include <stddef.h>
# include <stdbool.h>
# include <inttypes.h>
# include <limits.h>
#endif

View File

@ -6,22 +6,26 @@
/// This file provides macros or functions to do some basic integer and bit
/// operations.
///
/// Endianness related integer operations (XX = 16, 32, or 64; Y = b or l):
/// Native endian inline functions (XX = 16, 32, or 64):
/// - Unaligned native endian reads: readXXne(ptr)
/// - Unaligned native endian writes: writeXXne(ptr, num)
/// - Aligned native endian reads: aligned_readXXne(ptr)
/// - Aligned native endian writes: aligned_writeXXne(ptr, num)
///
/// Endianness-converting integer operations (these can be macros!)
/// (XX = 16, 32, or 64; Y = b or l):
/// - Byte swapping: bswapXX(num)
/// - Byte order conversions to/from native: convXXYe(num)
/// - Aligned reads: readXXYe(ptr)
/// - Aligned writes: writeXXYe(ptr, num)
/// - Unaligned reads (16/32-bit only): unaligned_readXXYe(ptr)
/// - Unaligned writes (16/32-bit only): unaligned_writeXXYe(ptr, num)
/// - Byte order conversions to/from native (byteswaps if Y isn't
/// the native endianness): convXXYe(num)
/// - Unaligned reads (16/32-bit only): readXXYe(ptr)
/// - Unaligned writes (16/32-bit only): writeXXYe(ptr, num)
/// - Aligned reads: aligned_readXXYe(ptr)
/// - Aligned writes: aligned_writeXXYe(ptr, num)
///
/// Since they can macros, the arguments should have no side effects since
/// they may be evaluated more than once.
/// Since the above can macros, the arguments should have no side effects
/// because they may be evaluated more than once.
///
/// \todo PowerPC and possibly some other architectures support
/// byte swapping load and store instructions. This file
/// doesn't take advantage of those instructions.
///
/// Bit scan operations for non-zero 32-bit integers:
/// Bit scan operations for non-zero 32-bit integers (inline functions):
/// - Bit scan reverse (find highest non-zero bit): bsr32(num)
/// - Count leading zeros: clz32(num)
/// - Count trailing zeros: ctz32(num)
@ -42,13 +46,26 @@
#define TUKLIB_INTEGER_H
#include "tuklib_common.h"
#include <string.h>
// Newer Intel C compilers require immintrin.h for _bit_scan_reverse()
// and such functions.
#if defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1500)
# include <immintrin.h>
#endif
////////////////////////////////////////
// Operating system specific features //
////////////////////////////////////////
///////////////////
// Byte swapping //
///////////////////
#if defined(HAVE_BYTESWAP_H)
#if defined(HAVE___BUILTIN_BSWAPXX)
// GCC >= 4.8 and Clang
# define bswap16(n) __builtin_bswap16(n)
# define bswap32(n) __builtin_bswap32(n)
# define bswap64(n) __builtin_bswap64(n)
#elif defined(HAVE_BYTESWAP_H)
// glibc, uClibc, dietlibc
# include <byteswap.h>
# ifdef HAVE_BSWAP_16
@ -97,34 +114,33 @@
# endif
#endif
///////////////////
// Byte swapping //
///////////////////
#ifndef bswap16
# define bswap16(num) \
(((uint16_t)(num) << 8) | ((uint16_t)(num) >> 8))
# define bswap16(n) (uint16_t)( \
(((n) & 0x00FFU) << 8) \
| (((n) & 0xFF00U) >> 8) \
)
#endif
#ifndef bswap32
# define bswap32(num) \
( (((uint32_t)(num) << 24) ) \
| (((uint32_t)(num) << 8) & UINT32_C(0x00FF0000)) \
| (((uint32_t)(num) >> 8) & UINT32_C(0x0000FF00)) \
| (((uint32_t)(num) >> 24) ) )
# define bswap32(n) (uint32_t)( \
(((n) & UINT32_C(0x000000FF)) << 24) \
| (((n) & UINT32_C(0x0000FF00)) << 8) \
| (((n) & UINT32_C(0x00FF0000)) >> 8) \
| (((n) & UINT32_C(0xFF000000)) >> 24) \
)
#endif
#ifndef bswap64
# define bswap64(num) \
( (((uint64_t)(num) << 56) ) \
| (((uint64_t)(num) << 40) & UINT64_C(0x00FF000000000000)) \
| (((uint64_t)(num) << 24) & UINT64_C(0x0000FF0000000000)) \
| (((uint64_t)(num) << 8) & UINT64_C(0x000000FF00000000)) \
| (((uint64_t)(num) >> 8) & UINT64_C(0x00000000FF000000)) \
| (((uint64_t)(num) >> 24) & UINT64_C(0x0000000000FF0000)) \
| (((uint64_t)(num) >> 40) & UINT64_C(0x000000000000FF00)) \
| (((uint64_t)(num) >> 56) ) )
# define bswap64(n) (uint64_t)( \
(((n) & UINT64_C(0x00000000000000FF)) << 56) \
| (((n) & UINT64_C(0x000000000000FF00)) << 40) \
| (((n) & UINT64_C(0x0000000000FF0000)) << 24) \
| (((n) & UINT64_C(0x00000000FF000000)) << 8) \
| (((n) & UINT64_C(0x000000FF00000000)) >> 8) \
| (((n) & UINT64_C(0x0000FF0000000000)) >> 24) \
| (((n) & UINT64_C(0x00FF000000000000)) >> 40) \
| (((n) & UINT64_C(0xFF00000000000000)) >> 56) \
)
#endif
// Define conversion macros using the basic byte swapping macros.
@ -169,76 +185,76 @@
#endif
//////////////////////////////
// Aligned reads and writes //
//////////////////////////////
////////////////////////////////
// Unaligned reads and writes //
////////////////////////////////
// The traditional way of casting e.g. *(const uint16_t *)uint8_pointer
// is bad even if the uint8_pointer is properly aligned because this kind
// of casts break strict aliasing rules and result in undefined behavior.
// With unaligned pointers it's even worse: compilers may emit vector
// instructions that require aligned pointers even if non-vector
// instructions work with unaligned pointers.
//
// Using memcpy() is the standard compliant way to do unaligned access.
// Many modern compilers inline it so there is no function call overhead.
// For those compilers that don't handle the memcpy() method well, the
// old casting method (that violates strict aliasing) can be requested at
// build time. A third method, casting to a packed struct, would also be
// an option but isn't provided to keep things simpler (it's already a mess).
// Hopefully this is flexible enough in practice.
static inline uint16_t
read16be(const uint8_t *buf)
read16ne(const uint8_t *buf)
{
uint16_t num = *(const uint16_t *)buf;
return conv16be(num);
}
static inline uint16_t
read16le(const uint8_t *buf)
{
uint16_t num = *(const uint16_t *)buf;
return conv16le(num);
#if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
&& defined(TUKLIB_USE_UNSAFE_TYPE_PUNNING)
return *(const uint16_t *)buf;
#else
uint16_t num;
memcpy(&num, buf, sizeof(num));
return num;
#endif
}
static inline uint32_t
read32be(const uint8_t *buf)
read32ne(const uint8_t *buf)
{
uint32_t num = *(const uint32_t *)buf;
return conv32be(num);
}
static inline uint32_t
read32le(const uint8_t *buf)
{
uint32_t num = *(const uint32_t *)buf;
return conv32le(num);
#if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
&& defined(TUKLIB_USE_UNSAFE_TYPE_PUNNING)
return *(const uint32_t *)buf;
#else
uint32_t num;
memcpy(&num, buf, sizeof(num));
return num;
#endif
}
static inline uint64_t
read64be(const uint8_t *buf)
read64ne(const uint8_t *buf)
{
uint64_t num = *(const uint64_t *)buf;
return conv64be(num);
#if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
&& defined(TUKLIB_USE_UNSAFE_TYPE_PUNNING)
return *(const uint64_t *)buf;
#else
uint64_t num;
memcpy(&num, buf, sizeof(num));
return num;
#endif
}
static inline uint64_t
read64le(const uint8_t *buf)
{
uint64_t num = *(const uint64_t *)buf;
return conv64le(num);
}
// NOTE: Possible byte swapping must be done in a macro to allow GCC
// to optimize byte swapping of constants when using glibc's or *BSD's
// byte swapping macros. The actual write is done in an inline function
// to make type checking of the buf pointer possible similarly to readXXYe()
// functions.
#define write16be(buf, num) write16ne((buf), conv16be(num))
#define write16le(buf, num) write16ne((buf), conv16le(num))
#define write32be(buf, num) write32ne((buf), conv32be(num))
#define write32le(buf, num) write32ne((buf), conv32le(num))
#define write64be(buf, num) write64ne((buf), conv64be(num))
#define write64le(buf, num) write64ne((buf), conv64le(num))
static inline void
write16ne(uint8_t *buf, uint16_t num)
{
#if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
&& defined(TUKLIB_USE_UNSAFE_TYPE_PUNNING)
*(uint16_t *)buf = num;
#else
memcpy(buf, &num, sizeof(num));
#endif
return;
}
@ -246,7 +262,12 @@ write16ne(uint8_t *buf, uint16_t num)
static inline void
write32ne(uint8_t *buf, uint32_t num)
{
#if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
&& defined(TUKLIB_USE_UNSAFE_TYPE_PUNNING)
*(uint32_t *)buf = num;
#else
memcpy(buf, &num, sizeof(num));
#endif
return;
}
@ -254,90 +275,114 @@ write32ne(uint8_t *buf, uint32_t num)
static inline void
write64ne(uint8_t *buf, uint64_t num)
{
#if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
&& defined(TUKLIB_USE_UNSAFE_TYPE_PUNNING)
*(uint64_t *)buf = num;
#else
memcpy(buf, &num, sizeof(num));
#endif
return;
}
////////////////////////////////
// Unaligned reads and writes //
////////////////////////////////
// NOTE: TUKLIB_FAST_UNALIGNED_ACCESS indicates only support for 16-bit and
// 32-bit unaligned integer loads and stores. It's possible that 64-bit
// unaligned access doesn't work or is slower than byte-by-byte access.
// Since unaligned 64-bit is probably not needed as often as 16-bit or
// 32-bit, we simply don't support 64-bit unaligned access for now.
#ifdef TUKLIB_FAST_UNALIGNED_ACCESS
# define unaligned_read16be read16be
# define unaligned_read16le read16le
# define unaligned_read32be read32be
# define unaligned_read32le read32le
# define unaligned_write16be write16be
# define unaligned_write16le write16le
# define unaligned_write32be write32be
# define unaligned_write32le write32le
#else
static inline uint16_t
unaligned_read16be(const uint8_t *buf)
read16be(const uint8_t *buf)
{
#if defined(WORDS_BIGENDIAN) || defined(TUKLIB_FAST_UNALIGNED_ACCESS)
uint16_t num = read16ne(buf);
return conv16be(num);
#else
uint16_t num = ((uint16_t)buf[0] << 8) | (uint16_t)buf[1];
return num;
#endif
}
static inline uint16_t
unaligned_read16le(const uint8_t *buf)
read16le(const uint8_t *buf)
{
#if !defined(WORDS_BIGENDIAN) || defined(TUKLIB_FAST_UNALIGNED_ACCESS)
uint16_t num = read16ne(buf);
return conv16le(num);
#else
uint16_t num = ((uint16_t)buf[0]) | ((uint16_t)buf[1] << 8);
return num;
#endif
}
static inline uint32_t
unaligned_read32be(const uint8_t *buf)
read32be(const uint8_t *buf)
{
#if defined(WORDS_BIGENDIAN) || defined(TUKLIB_FAST_UNALIGNED_ACCESS)
uint32_t num = read32ne(buf);
return conv32be(num);
#else
uint32_t num = (uint32_t)buf[0] << 24;
num |= (uint32_t)buf[1] << 16;
num |= (uint32_t)buf[2] << 8;
num |= (uint32_t)buf[3];
return num;
#endif
}
static inline uint32_t
unaligned_read32le(const uint8_t *buf)
read32le(const uint8_t *buf)
{
#if !defined(WORDS_BIGENDIAN) || defined(TUKLIB_FAST_UNALIGNED_ACCESS)
uint32_t num = read32ne(buf);
return conv32le(num);
#else
uint32_t num = (uint32_t)buf[0];
num |= (uint32_t)buf[1] << 8;
num |= (uint32_t)buf[2] << 16;
num |= (uint32_t)buf[3] << 24;
return num;
#endif
}
// NOTE: Possible byte swapping must be done in a macro to allow the compiler
// to optimize byte swapping of constants when using glibc's or *BSD's
// byte swapping macros. The actual write is done in an inline function
// to make type checking of the buf pointer possible.
#if defined(WORDS_BIGENDIAN) || defined(TUKLIB_FAST_UNALIGNED_ACCESS)
# define write16be(buf, num) write16ne(buf, conv16be(num))
# define write32be(buf, num) write32ne(buf, conv32be(num))
#endif
#if !defined(WORDS_BIGENDIAN) || defined(TUKLIB_FAST_UNALIGNED_ACCESS)
# define write16le(buf, num) write16ne(buf, conv16le(num))
# define write32le(buf, num) write32ne(buf, conv32le(num))
#endif
#ifndef write16be
static inline void
unaligned_write16be(uint8_t *buf, uint16_t num)
write16be(uint8_t *buf, uint16_t num)
{
buf[0] = (uint8_t)(num >> 8);
buf[1] = (uint8_t)num;
return;
}
#endif
#ifndef write16le
static inline void
unaligned_write16le(uint8_t *buf, uint16_t num)
write16le(uint8_t *buf, uint16_t num)
{
buf[0] = (uint8_t)num;
buf[1] = (uint8_t)(num >> 8);
return;
}
#endif
#ifndef write32be
static inline void
unaligned_write32be(uint8_t *buf, uint32_t num)
write32be(uint8_t *buf, uint32_t num)
{
buf[0] = (uint8_t)(num >> 24);
buf[1] = (uint8_t)(num >> 16);
@ -345,10 +390,12 @@ unaligned_write32be(uint8_t *buf, uint32_t num)
buf[3] = (uint8_t)num;
return;
}
#endif
#ifndef write32le
static inline void
unaligned_write32le(uint8_t *buf, uint32_t num)
write32le(uint8_t *buf, uint32_t num)
{
buf[0] = (uint8_t)num;
buf[1] = (uint8_t)(num >> 8);
@ -356,10 +403,184 @@ unaligned_write32le(uint8_t *buf, uint32_t num)
buf[3] = (uint8_t)(num >> 24);
return;
}
#endif
//////////////////////////////
// Aligned reads and writes //
//////////////////////////////
// Separate functions for aligned reads and writes are provided since on
// strict-align archs aligned access is much faster than unaligned access.
//
// Just like in the unaligned case, memcpy() is needed to avoid
// strict aliasing violations. However, on archs that don't support
// unaligned access the compiler cannot know that the pointers given
// to memcpy() are aligned which results in slow code. As of C11 there is
// no standard way to tell the compiler that we know that the address is
// aligned but some compilers have language extensions to do that. With
// such language extensions the memcpy() method gives excellent results.
//
// What to do on a strict-align system when no known language extentensions
// are available? Falling back to byte-by-byte access would be safe but ruin
// optimizations that have been made specifically with aligned access in mind.
// As a compromise, aligned reads will fall back to non-compliant type punning
// but aligned writes will be byte-by-byte, that is, fast reads are preferred
// over fast writes. This obviously isn't great but hopefully it's a working
// compromise for now.
//
// __builtin_assume_aligned is support by GCC >= 4.7 and clang >= 3.6.
#ifdef HAVE___BUILTIN_ASSUME_ALIGNED
# define tuklib_memcpy_aligned(dest, src, size) \
memcpy(dest, __builtin_assume_aligned(src, size), size)
#else
# define tuklib_memcpy_aligned(dest, src, size) \
memcpy(dest, src, size)
# ifndef TUKLIB_FAST_UNALIGNED_ACCESS
# define TUKLIB_USE_UNSAFE_ALIGNED_READS 1
# endif
#endif
static inline uint16_t
aligned_read16ne(const uint8_t *buf)
{
#if defined(TUKLIB_USE_UNSAFE_TYPE_PUNNING) \
|| defined(TUKLIB_USE_UNSAFE_ALIGNED_READS)
return *(const uint16_t *)buf;
#else
uint16_t num;
tuklib_memcpy_aligned(&num, buf, sizeof(num));
return num;
#endif
}
static inline uint32_t
aligned_read32ne(const uint8_t *buf)
{
#if defined(TUKLIB_USE_UNSAFE_TYPE_PUNNING) \
|| defined(TUKLIB_USE_UNSAFE_ALIGNED_READS)
return *(const uint32_t *)buf;
#else
uint32_t num;
tuklib_memcpy_aligned(&num, buf, sizeof(num));
return num;
#endif
}
static inline uint64_t
aligned_read64ne(const uint8_t *buf)
{
#if defined(TUKLIB_USE_UNSAFE_TYPE_PUNNING) \
|| defined(TUKLIB_USE_UNSAFE_ALIGNED_READS)
return *(const uint64_t *)buf;
#else
uint64_t num;
tuklib_memcpy_aligned(&num, buf, sizeof(num));
return num;
#endif
}
static inline void
aligned_write16ne(uint8_t *buf, uint16_t num)
{
#ifdef TUKLIB_USE_UNSAFE_TYPE_PUNNING
*(uint16_t *)buf = num;
#else
tuklib_memcpy_aligned(buf, &num, sizeof(num));
#endif
return;
}
static inline void
aligned_write32ne(uint8_t *buf, uint32_t num)
{
#ifdef TUKLIB_USE_UNSAFE_TYPE_PUNNING
*(uint32_t *)buf = num;
#else
tuklib_memcpy_aligned(buf, &num, sizeof(num));
#endif
return;
}
static inline void
aligned_write64ne(uint8_t *buf, uint64_t num)
{
#ifdef TUKLIB_USE_UNSAFE_TYPE_PUNNING
*(uint64_t *)buf = num;
#else
tuklib_memcpy_aligned(buf, &num, sizeof(num));
#endif
return;
}
static inline uint16_t
aligned_read16be(const uint8_t *buf)
{
uint16_t num = aligned_read16ne(buf);
return conv16be(num);
}
static inline uint16_t
aligned_read16le(const uint8_t *buf)
{
uint16_t num = aligned_read16ne(buf);
return conv16le(num);
}
static inline uint32_t
aligned_read32be(const uint8_t *buf)
{
uint32_t num = aligned_read32ne(buf);
return conv32be(num);
}
static inline uint32_t
aligned_read32le(const uint8_t *buf)
{
uint32_t num = aligned_read32ne(buf);
return conv32le(num);
}
static inline uint64_t
aligned_read64be(const uint8_t *buf)
{
uint64_t num = aligned_read64ne(buf);
return conv64be(num);
}
static inline uint64_t
aligned_read64le(const uint8_t *buf)
{
uint64_t num = aligned_read64ne(buf);
return conv64le(num);
}
// These need to be macros like in the unaligned case.
#define aligned_write16be(buf, num) aligned_write16ne((buf), conv16be(num))
#define aligned_write16le(buf, num) aligned_write16ne((buf), conv16le(num))
#define aligned_write32be(buf, num) aligned_write32ne((buf), conv32be(num))
#define aligned_write32le(buf, num) aligned_write32ne((buf), conv32le(num))
#define aligned_write64be(buf, num) aligned_write64ne((buf), conv64be(num))
#define aligned_write64le(buf, num) aligned_write64ne((buf), conv64le(num))
////////////////////
// Bit operations //
////////////////////
static inline uint32_t
bsr32(uint32_t n)
{
@ -372,44 +593,42 @@ bsr32(uint32_t n)
// multiple architectures. On x86, __builtin_clz() ^ 31U becomes
// either plain BSR (so the XOR gets optimized away) or LZCNT and
// XOR (if -march indicates that SSE4a instructions are supported).
return __builtin_clz(n) ^ 31U;
return (uint32_t)__builtin_clz(n) ^ 31U;
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
uint32_t i;
__asm__("bsrl %1, %0" : "=r" (i) : "rm" (n));
return i;
#elif defined(_MSC_VER) && _MSC_VER >= 1400
// MSVC isn't supported by tuklib, but since this code exists,
// it doesn't hurt to have it here anyway.
uint32_t i = 0;
#elif defined(_MSC_VER)
unsigned long i;
_BitScanReverse(&i, n);
return i;
#else
uint32_t i = 31;
if ((n & UINT32_C(0xFFFF0000)) == 0) {
if ((n & 0xFFFF0000) == 0) {
n <<= 16;
i = 15;
}
if ((n & UINT32_C(0xFF000000)) == 0) {
if ((n & 0xFF000000) == 0) {
n <<= 8;
i -= 8;
}
if ((n & UINT32_C(0xF0000000)) == 0) {
if ((n & 0xF0000000) == 0) {
n <<= 4;
i -= 4;
}
if ((n & UINT32_C(0xC0000000)) == 0) {
if ((n & 0xC0000000) == 0) {
n <<= 2;
i -= 2;
}
if ((n & UINT32_C(0x80000000)) == 0)
if ((n & 0x80000000) == 0)
--i;
return i;
@ -424,44 +643,44 @@ clz32(uint32_t n)
return _bit_scan_reverse(n) ^ 31U;
#elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX == UINT32_MAX
return __builtin_clz(n);
return (uint32_t)__builtin_clz(n);
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
uint32_t i = 0;
uint32_t i;
__asm__("bsrl %1, %0\n\t"
"xorl $31, %0"
: "=r" (i) : "rm" (n));
return i;
#elif defined(_MSC_VER) && _MSC_VER >= 1400
uint32_t i = 0;
#elif defined(_MSC_VER)
unsigned long i;
_BitScanReverse(&i, n);
return i ^ 31U;
#else
uint32_t i = 0;
if ((n & UINT32_C(0xFFFF0000)) == 0) {
if ((n & 0xFFFF0000) == 0) {
n <<= 16;
i = 16;
}
if ((n & UINT32_C(0xFF000000)) == 0) {
if ((n & 0xFF000000) == 0) {
n <<= 8;
i += 8;
}
if ((n & UINT32_C(0xF0000000)) == 0) {
if ((n & 0xF0000000) == 0) {
n <<= 4;
i += 4;
}
if ((n & UINT32_C(0xC0000000)) == 0) {
if ((n & 0xC0000000) == 0) {
n <<= 2;
i += 2;
}
if ((n & UINT32_C(0x80000000)) == 0)
if ((n & 0x80000000) == 0)
++i;
return i;
@ -476,42 +695,42 @@ ctz32(uint32_t n)
return _bit_scan_forward(n);
#elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX >= UINT32_MAX
return __builtin_ctz(n);
return (uint32_t)__builtin_ctz(n);
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
uint32_t i = 0;
uint32_t i;
__asm__("bsfl %1, %0" : "=r" (i) : "rm" (n));
return i;
#elif defined(_MSC_VER) && _MSC_VER >= 1400
uint32_t i = 0;
#elif defined(_MSC_VER)
unsigned long i;
_BitScanForward(&i, n);
return i;
#else
uint32_t i = 0;
if ((n & UINT32_C(0x0000FFFF)) == 0) {
if ((n & 0x0000FFFF) == 0) {
n >>= 16;
i = 16;
}
if ((n & UINT32_C(0x000000FF)) == 0) {
if ((n & 0x000000FF) == 0) {
n >>= 8;
i += 8;
}
if ((n & UINT32_C(0x0000000F)) == 0) {
if ((n & 0x0000000F) == 0) {
n >>= 4;
i += 4;
}
if ((n & UINT32_C(0x00000003)) == 0) {
if ((n & 0x00000003) == 0) {
n >>= 2;
i += 2;
}
if ((n & UINT32_C(0x00000001)) == 0)
if ((n & 0x00000001) == 0)
++i;
return i;

View File

@ -91,11 +91,17 @@ decode_buffer(lzma_coder *coder,
in, in_pos, in_size);
// Copy the decoded data from the dictionary to the out[]
// buffer.
// buffer. Do it conditionally because out can be NULL
// (in which case copy_size is always 0). Calling memcpy()
// with a null-pointer is undefined even if the third
// argument is 0.
const size_t copy_size = coder->dict.pos - dict_start;
assert(copy_size <= out_size - *out_pos);
memcpy(out + *out_pos, coder->dict.buf + dict_start,
copy_size);
if (copy_size > 0)
memcpy(out + *out_pos, coder->dict.buf + dict_start,
copy_size);
*out_pos += copy_size;
// Reset the dictionary if so requested by coder->lz.code().
@ -125,8 +131,7 @@ decode_buffer(lzma_coder *coder,
static lzma_ret
lz_decode(void *coder_ptr,
const lzma_allocator *allocator lzma_attribute((__unused__)),
lz_decode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size,

View File

@ -39,7 +39,7 @@
// Endianness doesn't matter in hash_2_calc() (no effect on the output).
#ifdef TUKLIB_FAST_UNALIGNED_ACCESS
# define hash_2_calc() \
const uint32_t hash_value = *(const uint16_t *)(cur)
const uint32_t hash_value = read16ne(cur)
#else
# define hash_2_calc() \
const uint32_t hash_value \

View File

@ -33,9 +33,8 @@ lzma_mf_find(lzma_mf *mf, uint32_t *count_ptr, lzma_match *matches)
if (count > 0) {
#ifndef NDEBUG
uint32_t i = 0;
// Validate the matches.
for (i = 0; i < count; ++i) {
for (uint32_t i = 0; i < count; ++i) {
assert(matches[i].len <= mf->nice_len);
assert(matches[i].dist < mf->read_pos);
assert(memcmp(mf_ptr(mf) - 1,
@ -109,14 +108,14 @@ static void
normalize(lzma_mf *mf)
{
assert(mf->read_pos + mf->offset == MUST_NORMALIZE_POS);
uint32_t i = 0;
// In future we may not want to touch the lowest bits, because there
// may be match finders that use larger resolution than one byte.
const uint32_t subvalue
= (MUST_NORMALIZE_POS - mf->cyclic_size);
// & (~(UINT32_C(1) << 10) - 1);
// & ~((UINT32_C(1) << 10) - 1);
for (i = 0; i < mf->hash_count; ++i) {
for (uint32_t i = 0; i < mf->hash_count; ++i) {
// If the distance is greater than the dictionary size,
// we can simply mark the hash element as empty.
if (mf->hash[i] <= subvalue)
@ -125,7 +124,7 @@ normalize(lzma_mf *mf)
mf->hash[i] -= subvalue;
}
for (i = 0; i < mf->sons_count; ++i) {
for (uint32_t i = 0; i < mf->sons_count; ++i) {
// Do the same for mf->son.
//
// NOTE: There may be uninitialized elements in mf->son.

View File

@ -101,7 +101,7 @@ extern const uint8_t lzma_fastpos[1 << FASTPOS_BITS];
(UINT32_C(1) << (FASTPOS_BITS + fastpos_shift(extra, n)))
#define fastpos_result(dist, extra, n) \
lzma_fastpos[(dist) >> fastpos_shift(extra, n)] \
(uint32_t)(lzma_fastpos[(dist) >> fastpos_shift(extra, n)]) \
+ 2 * fastpos_shift(extra, n)

View File

@ -122,7 +122,8 @@ typedef enum {
/// byte; and
/// - the highest literal_context_bits bits of the previous byte.
#define literal_subcoder(probs, lc, lp_mask, pos, prev_byte) \
((probs)[(((pos) & lp_mask) << lc) + ((prev_byte) >> (8 - lc))])
((probs)[(((pos) & (lp_mask)) << (lc)) \
+ ((uint32_t)(prev_byte) >> (8U - (lc)))])
static inline void

View File

@ -398,7 +398,7 @@ lzma_decode(void *coder_ptr, lzma_dict *restrict dictptr,
// ("match byte") to "len" to minimize the
// number of variables we need to store
// between decoder calls.
len = dict_get(&dict, rep0) << 1;
len = (uint32_t)(dict_get(&dict, rep0)) << 1;
// The usage of "offset" allows omitting some
// branches, which should give tiny speed
@ -569,7 +569,7 @@ lzma_decode(void *coder_ptr, lzma_dict *restrict dictptr,
#ifdef HAVE_SMALL
do {
rc_bit(probs[symbol], ,
rep0 += 1 << offset,
rep0 += 1U << offset,
SEQ_DIST_MODEL);
} while (++offset < limit);
#else
@ -577,25 +577,25 @@ lzma_decode(void *coder_ptr, lzma_dict *restrict dictptr,
case 5:
assert(offset == 0);
rc_bit(probs[symbol], ,
rep0 += 1,
rep0 += 1U,
SEQ_DIST_MODEL);
++offset;
--limit;
case 4:
rc_bit(probs[symbol], ,
rep0 += 1 << offset,
rep0 += 1U << offset,
SEQ_DIST_MODEL);
++offset;
--limit;
case 3:
rc_bit(probs[symbol], ,
rep0 += 1 << offset,
rep0 += 1U << offset,
SEQ_DIST_MODEL);
++offset;
--limit;
case 2:
rc_bit(probs[symbol], ,
rep0 += 1 << offset,
rep0 += 1U << offset,
SEQ_DIST_MODEL);
++offset;
--limit;
@ -607,7 +607,7 @@ lzma_decode(void *coder_ptr, lzma_dict *restrict dictptr,
// the unneeded updating of
// "symbol".
rc_bit_last(probs[symbol], ,
rep0 += 1 << offset,
rep0 += 1U << offset,
SEQ_DIST_MODEL);
}
#endif
@ -635,7 +635,7 @@ lzma_decode(void *coder_ptr, lzma_dict *restrict dictptr,
do {
rc_bit(coder->pos_align[
symbol], ,
rep0 += 1 << offset,
rep0 += 1U << offset,
SEQ_ALIGN);
} while (++offset < ALIGN_BITS);
#else
@ -1049,7 +1049,7 @@ lzma_lzma_props_decode(void **options, const lzma_allocator *allocator,
// All dictionary sizes are accepted, including zero. LZ decoder
// will automatically use a dictionary at least a few KiB even if
// a smaller dictionary is requested.
opt->dict_size = unaligned_read32le(props + 1);
opt->dict_size = read32le(props + 1);
opt->preset_dict = NULL;
opt->preset_dict_size = 0;

View File

@ -663,7 +663,7 @@ lzma_lzma_props_encode(const void *options, uint8_t *out)
if (lzma_lzma_lclppb_encode(opt, out))
return LZMA_PROG_ERROR;
unaligned_write32le(out + 1, opt->dict_size);
write32le(out + 1, opt->dict_size);
return LZMA_OK;
}

View File

@ -636,9 +636,10 @@ helper2(lzma_lzma1_encoder *coder, uint32_t *reps, const uint8_t *buf,
uint32_t len_test_2 = len_test + 1;
const uint32_t limit = my_min(buf_avail_full,
len_test_2 + nice_len);
for (; len_test_2 < limit
&& buf[len_test_2] == buf_back[len_test_2];
++len_test_2) ;
// NOTE: len_test_2 may be greater than limit so the call to
// lzma_memcmplen() must be done conditionally.
if (len_test_2 < limit)
len_test_2 = lzma_memcmplen(buf, buf_back, len_test_2, limit);
len_test_2 -= len_test + 1;
@ -732,9 +733,12 @@ helper2(lzma_lzma1_encoder *coder, uint32_t *reps, const uint8_t *buf,
const uint32_t limit = my_min(buf_avail_full,
len_test_2 + nice_len);
for (; len_test_2 < limit &&
buf[len_test_2] == buf_back[len_test_2];
++len_test_2) ;
// NOTE: len_test_2 may be greater than limit
// so the call to lzma_memcmplen() must be
// done conditionally.
if (len_test_2 < limit)
len_test_2 = lzma_memcmplen(buf, buf_back,
len_test_2, limit);
len_test_2 -= len_test + 1;

View File

@ -25,8 +25,7 @@
// MATCH_LEN_MIN bytes. Unaligned access gives tiny gain so there's no
// reason to not use it when it is supported.
#ifdef TUKLIB_FAST_UNALIGNED_ACCESS
# define not_equal_16(a, b) \
(*(const uint16_t *)(a) != *(const uint16_t *)(b))
# define not_equal_16(a, b) (read16ne(a) != read16ne(b))
#else
# define not_equal_16(a, b) \
((a)[0] != (b)[0] || (a)[1] != (b)[1])

View File

@ -19,9 +19,9 @@
/// Maximum number of symbols that can be put pending into lzma_range_encoder
/// structure between calls to lzma_rc_encode(). For LZMA, 52+5 is enough
/// structure between calls to lzma_rc_encode(). For LZMA, 48+5 is enough
/// (match with big distance and length followed by range encoder flush).
#define RC_SYMBOLS_MAX 58
#define RC_SYMBOLS_MAX 53
typedef struct {

View File

@ -17,7 +17,9 @@
/***************************************************************************/
#define MZ_LZMA_HEADER_SIZE (4)
#define MZ_LZMA_MAGIC_SIZE (4)
#define MZ_LZMA_ZIP_HEADER_SIZE (5)
#define MZ_LZMA_ALONE_HEADER_SIZE (MZ_LZMA_ZIP_HEADER_SIZE + 8)
/***************************************************************************/
@ -50,6 +52,8 @@ typedef struct mz_stream_lzma_s {
int64_t max_total_in;
int64_t max_total_out;
int8_t initialized;
int8_t header;
int32_t header_size;
uint32_t preset;
} mz_stream_lzma;
@ -72,6 +76,7 @@ int32_t mz_stream_lzma_open(void *stream, const char *path, int32_t mode) {
lzma->total_in = 0;
lzma->total_out = 0;
lzma->header = 1;
if (mode & MZ_OPEN_MODE_WRITE) {
#ifdef MZ_ZIP_NO_COMPRESSION
@ -98,7 +103,7 @@ int32_t mz_stream_lzma_open(void *stream, const char *path, int32_t mode) {
mz_stream_write_uint8(lzma->stream.base, LZMA_VERSION_MINOR);
mz_stream_write_uint16(lzma->stream.base, (uint16_t)size);
lzma->total_out += MZ_LZMA_HEADER_SIZE;
lzma->total_out += MZ_LZMA_MAGIC_SIZE;
lzma->error = lzma_alone_encoder(&lzma->lstream, &opt_lzma);
#endif
@ -116,7 +121,7 @@ int32_t mz_stream_lzma_open(void *stream, const char *path, int32_t mode) {
mz_stream_read_uint8(lzma->stream.base, &minor);
mz_stream_read_uint16(lzma->stream.base, (uint16_t *)&size);
lzma->total_in += MZ_LZMA_HEADER_SIZE;
lzma->total_in += MZ_LZMA_MAGIC_SIZE;
lzma->error = lzma_alone_decoder(&lzma->lstream, UINT64_MAX);
#endif
@ -168,11 +173,32 @@ int32_t mz_stream_lzma_read(void *stream, void *buf, int32_t size) {
bytes_to_read = (int32_t)(lzma->max_total_in - lzma->total_in);
}
if (lzma->header) {
bytes_to_read = MZ_LZMA_ZIP_HEADER_SIZE - lzma->header_size;
}
read = mz_stream_read(lzma->stream.base, lzma->buffer, bytes_to_read);
if (read < 0)
return read;
/* Write uncompressed size for lzma alone header not in zip format */
if (lzma->header) {
lzma->header_size += read;
if (lzma->header_size == MZ_LZMA_ZIP_HEADER_SIZE) {
uint64_t uncompressed_size = UINT64_MAX;
memcpy(lzma->buffer + MZ_LZMA_ZIP_HEADER_SIZE, &uncompressed_size, sizeof(uncompressed_size));
read += sizeof(uncompressed_size);
bytes_to_read = sizeof(lzma->buffer);
lzma->total_in -= sizeof(uncompressed_size);
lzma->header = 0;
}
}
lzma->lstream.next_in = lzma->buffer;
lzma->lstream.avail_in = (size_t)read;
}
@ -214,8 +240,30 @@ int32_t mz_stream_lzma_read(void *stream, void *buf, int32_t size) {
#ifndef MZ_ZIP_NO_COMPRESSION
static int32_t mz_stream_lzma_flush(void *stream) {
mz_stream_lzma *lzma = (mz_stream_lzma *)stream;
if (mz_stream_write(lzma->stream.base, lzma->buffer, lzma->buffer_len) != lzma->buffer_len)
int32_t buffer_len = lzma->buffer_len;
uint8_t *buffer = lzma->buffer;
/* Skip writing lzma_alone header uncompressed size for zip format */
if (lzma->header) {
uint64_t uncompressed_size = 0;
if (lzma->buffer_len < MZ_LZMA_ALONE_HEADER_SIZE)
return MZ_OK;
if (mz_stream_write(lzma->stream.base, buffer, MZ_LZMA_ZIP_HEADER_SIZE) != MZ_LZMA_ZIP_HEADER_SIZE)
return MZ_WRITE_ERROR;
buffer += MZ_LZMA_ALONE_HEADER_SIZE;
buffer_len -= MZ_LZMA_ALONE_HEADER_SIZE;
lzma->buffer_len -= sizeof(uncompressed_size);
lzma->total_out -= sizeof(uncompressed_size);
lzma->header = 0;
}
if (mz_stream_write(lzma->stream.base, buffer, buffer_len) != buffer_len)
return MZ_WRITE_ERROR;
return MZ_OK;
}
@ -343,7 +391,7 @@ int32_t mz_stream_lzma_get_prop_int64(void *stream, int32_t prop, int64_t *value
*value = lzma->max_total_out;
break;
case MZ_STREAM_PROP_HEADER_SIZE:
*value = MZ_LZMA_HEADER_SIZE;
*value = MZ_LZMA_MAGIC_SIZE;
break;
default:
return MZ_EXIST_ERROR;